Conflict resolution: Proper inclusion v. overlap

Eric Baković UC San Diego

> Competition Workshop 2015 Linguistic Summer Institute University of Chicago July 12, 2015

(conflict = competition)

here, competition between generalizations over (phonological) strings

the point

- Why? What's so special about proper inclusion?
- I argue that the celebrated distinction between proper inclusion and overlap is a spurious one.
 - All that matters is *conflict*, and how it is resolved.

See my 2013 monograph for this same point, embedded in a larger discussion of blocking, complementarity, and the principles that are proposed to regulate these.

SPE rules and order

In rule-based generative phonology, generalizations are expressed as serially-ordered rewrite rules.

Kenstowicz & Kisseberth (1977, 1979)

Kiparsky (1968)

$V \longrightarrow [+stress] / = C_0((\breve{V}C_0^1)VC_0) \#$

$V \longrightarrow [+stress] / = C_0((\breve{V}C_0^1)VC_0) \#$

$V \longrightarrow [+stress] / = C_0 \breve{V} C_0^1 V C_0 \#$

Stress the antepenultimate vowel if there is one and if the penultimate vowel is short and in an open syllable (i.e. the penultimate syllable is light).

$V \longrightarrow [+stress] / = C_0((\breve{V}C_0^1)VC_0) \#$

 $V \longrightarrow [+stress] / - C_0 V C_0 \#$

Otherwise, stress the penultimate vowel if there is one.

$V \longrightarrow [+stress] / = C_0((\breve{V}C_0^1)VC_0) \#$

 $V \longrightarrow [+stress] / - C_0 #$

 \rightarrow [+stress] / $- C_0 \check{V} C_0^1 V C_0 \#$ \rightarrow [+stress] / $- C_0 V C_0 \#$ \rightarrow [+stress] / — C₀# If application of such rules were pa-trí-cí-á conjunctive rather than disjunctive, there could be as many as three

Chomsky & Halle (1968)

stresses assigned to one word.

 $V \longrightarrow [+stress] / = C_0((\breve{V}C_0^1)VC_0)\#$ $V \longrightarrow [+stress] / = C_0\breve{V}C_0^1VC_0\#$ $V \longrightarrow [+stress] / = C_0VC_0\#$ $V \longrightarrow [+stress] / = C_0\#$

Note the proper inclusion relationships among these strings, capitalized upon by the parenthesis notation

Metrical stress theory

- Final syllable extrametricality (modulo exhaustivity).
- Assign a bimoraic trochee at the right edge.

pa-(trí-ci)-(a) (ré-fi)-〈cit〉 re-(fḗ)-<cit> re-(féc)-<tus> (rế) (méns)

Hayes (1981, 1995)

Conflict in SPE

Actual conflict between rewrite rules arises under two conditions: mutual feeding and mutual bleeding.

Pullum (1976)

Kiparsky (1971)

Conflict in SPE

Neither of these types of interactions appears to require anything other than ordering. And yet...

Elsewhere Condition

Two rules of the form

 $A \rightarrow B/P _ Q$ $C \rightarrow D/R _ S$

are disjunctively ordered iff:

- A. the set of strings that fit *PAQ* is a subset of the set of strings that fit *RCS*, and
- B. the structural changes of the two rules are incompatible.

Proper Inclusion Precedence Principle

"incompatible structural changes" = $X \rightarrow Y vs. Y \rightarrow X$

the Elsewhere Condition is thus a response to issues involving cases of mutual feeding — it *prevents* Duke of York derivations

A properly includes the structural description of B.

Kiparsky (1973)

Koutsoudas et al. (1974)

Eleowhore Condition

"For all the cases of proper inclusion precedence considered here, the related rules are intrinsically disjunctive, since application of either rule yields a representation that fails to satisfy the structural description of the other." (fn. 7, p. 9)

the Proper Inclusion Precedence Principle is thus a response to issues involving cases of mutual bleeding to predict the order of rules in a Duke of Earl relationship

of the two rules are incompatible.

Kiparsky (1973)

Proper Inclusion Precedence Principle

For any representation R, which meets the structural description of each of two rules A and B, A takes applicational precedence over B with respect to R iff the structural description of A properly includes the structural description of B.

Koutsoudas et al. (1974)

Elsewhere Condition

Two rules of the form

 $A \rightarrow B / P _ Q$ $C \rightarrow D / R _ S$

are disjunctively ordered iff:

- the set of strings that fit *PAQ* is a subset of the set of strings that fit *RCS*, and
- the structural changes of the two rules are incompatible.

Proper Inclusion Precedence Principle

For any representation R, which meets the structural description of each of two rules A and B, A takes applicational precedence over B with respect to R iff the structural description of A **properly includes** the structural description of B.

Kiparsky (1973)

Koutsoudas et al. (1974)

Elsewhere Condition

Two rules of the form

 $A \longrightarrow B / P _ Q$ $C \longrightarrow D / R _ S$

are disjunctively ordered iff:

- the set of strings that fit *PAQ* is a subset of the set of strings that fit *RCS*, and
- the structural changes of the two rules are incompatible.

English lengthening & shortening

- *CiV* Lengthening: $V \rightarrow \overline{V} / (' _ C i) V$
 - e.g. re('mēdi)(al), ('rādi)(al), me('lōdi)(ous)...
- Trisyllabic Shortening: $V \rightarrow \breve{V} / (' _ C_0 V)$
 - e.g. ('rĕme) $\langle dy \rangle$, ('rădi) $\langle cal \rangle$, ('mĕlo) $\langle dy \rangle$...

Kenstowicz (1994)

English lengthening & shortening

✤ = blocking by EC	('rådi)(al)	('rådi)(cal)
$Lengthening V \longrightarrow \overline{V} / (' _ C i) V$	('rādi)〈al〉	
Shortening $V \rightarrow \breve{V} / (' _ C_0 V)$	*	('rădi)(cal)

Kenstowicz (1994)

English lengthening & shortening

Just to avoid this?	('rådi)(al)	('rådi)(cal)
Shortening $V \rightarrow \breve{V} / (' _ C_0 V)$	('rădi)(al)	('rădi)(cal)
$Lengthening V \longrightarrow \overline{V} / (' _ C i) V$	('rādi)(al)	

Disjunctive application is "maximized".

Chomsky (1967: 124-125), Chomsky & Halle (1968: 63)

"[C]ertain natural economy conditions" require that there be "no 'superfluous steps' in derivations".

Chomsky (1995: 220), Halle & Idsardi (1998: 1)

Nootka / Nuuchahnulth

labialization & delabialization

<i>Overlap requires Duke of York!</i>	muq	ħaju-qi	łaːkʷ-∫itł
$Labialization \\ [dors] \rightarrow [+rd] / [+rd]$	muq ^w	ħaju-q [∞] i	
$\frac{Delabialization}{[dors] \rightarrow [-rd] / \{\sigma}}$	muq		łaːk-∫itł

Whence proper inclusion?

- Proper inclusion is the one subcase of overlap for which there is only one truly possible order.
 - General > Specific allows Specific to apply,
 - Specific > General occults Specific.
- Proper inclusion is asymmetrically complete; unique among forms of overlap in that it can be non-arbitrarily used to determine which of two conflicting rules is blocked.

English' lengthening & shortening

Rules reversed	('rådi)(al)	('rådi)(cal)
$Lengthening V \longrightarrow \overline{V} / (' _ C i) V$	('rādi)〈al〉	
Shortening $V \rightarrow \breve{V} / (' _ C_0 V)$	('rădi) <al></al>	('rădi)(cal)

Nootka / Nuuchahnulth'

labialization & delabialization

Rules reversed	muq	ħaju-qi	łaːkʷ-∫itł
$Delabialization \\ [dors] \longrightarrow [-rd] / \{\sigma}$	muq		łaːk-∫itł
$Labialization \\ [dors] \longrightarrow [+rd] / [+rd]$	muq	ħaju-qʷi	

So what counts as conflict?

English

$/(\text{'rådi})\langle al \rangle/$	CiV-Long	Short	F
a. IS $(r\bar{a}di)\langle al \rangle$		*	(*)
b. $('r \breve{a} di)\langle al \rangle$	*!		(*)

$/(\text{'rådi})\langle \text{cal} \rangle /$	CiV-Long	Short	F
a. $(r\bar{a}di)\langle al \rangle$		* !	(*)
b. 🖙 ('rădi)(al)			(*)

English'

$/(\text{'rådi})\langle al \rangle/$	Short	CiV-Long	F
a. $(r\bar{a}di)\langle al \rangle$	*!		(*)
b. ☞ ('rădi)⟨al⟩		*	(*)

$/(\text{'rådi})\langle \text{cal} \rangle /$	Short	CiV-Long	F
a. $(r\bar{a}di)\langle al \rangle$	* !		(*)
b. 🖙 ('rădi)(al)			(*)

Nootka / Nuuchahnulth

/muq/	Delab	Lab	F
a. 🖙 muq		*	(*)
b. muq ^w	* !		(*)

/ħaju-qi/	Delab	Lab	F
a. ħaju-qi			(*)
b. ☞ ħaju-q ^w i		* !	(*)

Nootka / Nuuchahnulth'

/muq/	LAB	Delab	F
a. muq	*!		(*)
b. ☞ muq ^w		*	(*)

/ħaju-qi/	LAB	Delab	F
a. ħaju-qi			(*)
b. ☞ ħaju-q ^w i	*!		(*)

mutual feeding

'obliterative bleeding'

Kiparsky (1973)

Kiparsky (1973)

Diola Fogny assimilation & deletion

✤ = blocking by EC	ni-gam-gam	na-laŋ-laŋ	let-ku-jaw
Assimilation N $\rightarrow [\alpha pl] / _ [\alpha pl, -ct]$	ni-gaŋ-gam		
$\begin{array}{c} \text{Deletion} \\ C \longrightarrow \varnothing \ / \ _ \ C \end{array}$	*	na-la-laŋ	le-ku-jaw

Kiparsky (1973)

Diola Fogny' assimilation & deletion

this order	ni-gam-gam	na-laŋ-laŋ	let-ku-jaw
Assimilation $N \rightarrow [\alpha pl] / _ [\alpha pl, -ct]$	ni-gaŋ-gam		
$\begin{array}{c} \text{Deletion} \\ C \longrightarrow \varnothing \ / \ _ \ C \end{array}$	ni-ga-gam	na-la-laŋ	le-ku-jaw
'obliterat bleeding	ive g'		Kiparsky (1973)

Diola Fogny" assimilation & deletion

that order	ni-gam-gam	na-laŋ-laŋ	let-ku-jaw		
$\begin{array}{c} \text{Deletion} \\ C \longrightarrow \varnothing \ / \ _ \ C \end{array}$	ni-ga-gam	na-la-laŋ	le-ku-jaw		
Assimilation $N \rightarrow [\alpha pl] / [\alpha pl, -ct]$					
ʻobliterative bleeding' Kiparsky (1973					

Diola Fogny'(')

$\left\{ V \begin{array}{c} N \\ \left[(-)\alpha pl \right] \\ \sigma \end{array} \right]_{\sigma} \left[\begin{array}{c} -ct \\ \alpha pl \\ \end{array} \right] \right\}$	Agr(pl)-NC	NoCoda-C	ID(pl)	Max-C
a. $\mathbb{R} \left\{ V \right\}_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix} \right\}$				*
b. $\odot \{ V \ N \ [\alpha pl] \]_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix} \}$		* !	(*)	
$\left[\begin{array}{cc} c. & \left\{ V \begin{array}{c} N \\ \left[-\alpha pl \right] \end{array} \right]_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix} \right\} \right]$	*!	*	(*)	

Elsewhere Condition

Two rules of the form $A \rightarrow B/P _ Q$ $C \rightarrow D/R _ S$

are disjunctively ordered iff:

- the set of strings that fit *PAQ* is a subset of the set of strings that fit *RCS*, and
- the structural changes of the two rules are incompatible.

Elsewhere Condition

Rules A, B apply disjunctively to a form Φ iff

- The structural description of A properly includes that of B.
- The result of applying A to Φ is distinct from the result of applying B to Φ.
 In that case, A is applied first, and if it takes effect, then B is not applied.

Kiparsky (1973)

Kiparsky (1982)

Elsewhere Condition

Two rules of the form $A \rightarrow B / P = Q$ $C \rightarrow D / R = S$

are disjunctively ordered iff:

- the set of strings that fit *PAQ* **is a subset of** the set of strings that fit *RCS*, and
- the structural changes of the two rules are **incompatible**.

Elsewhere Condition

Rules A, B apply disjunctively to a form Φ iff

- The structural description of A **properly includes** that of B.
- The result of applying A to Φ is distinct from the result of applying B to Φ.

In that case, A is applied first, and if it takes effect, then B is not applied.

Kiparsky (1973)

Kiparsky (1982)

- The result of applying Assimilation is certainly "distinct" from the result of applying Deletion.
- But the result of applying Palatalization is also "distinct" from the result of applying Voicing, and yet we expect them both to apply in this case.

An alternative for Diola

- Prosodic licensing
 - consonants linked to the onset are licensed,
 - consonants not linked to the onset are deleted.
- Effectively: Deletion only targets unassimilated Cs
 - Assimilation simply bleeds Deletion.

Diola Fogny

$\left\{ V \begin{array}{c} N \\ \left[(-)\alpha \mathrm{pl} \right] \sigma \end{array} \right]_{\sigma} \left[\begin{array}{c} -\mathrm{ct} \\ \alpha \mathrm{pl} \end{array} \right] \right\}$	Agr(pl)-NC	NoCoda-C	ID(pl)	Max-C
a. {V] _{σ} [$-ct$ _{αpl} }				* !
b. $\mathbb{R}\left\{ V \mid N \\ \left[\alpha \mathrm{pl} \right] \right\} = \left\{ \left[\begin{array}{c} -\mathrm{ct} \\ \alpha \mathrm{pl} \end{array} \right] \right\}$			(*)	
c. {V N $\begin{bmatrix} -ct \\ \alpha pl \end{bmatrix}_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix}$ }	*!	*	(*)	

Another alternative

$\left[\left\{ V \begin{array}{c} N \\ \left[(-)\alpha pl \right] \right]_{\sigma} \left[\begin{matrix} -ct \\ \alpha pl \end{matrix} \right] \right\} \right]$	Agr(pl)-NC	NoCoda-C	ID(pl)	Max-C
a. {V] _{σ} [$-ct$ _{αpl} }	* !			*
b. $\mathbb{R}\left\{ V \mid N \\ [\alpha pl] \right\}_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix} \right\}$; ; (*)	
$\left[\begin{array}{cc} c. & \left\{ V \begin{array}{c} N \\ \left[-\alpha pl \right] \end{array} \right]_{\sigma} \begin{bmatrix} -ct \\ \alpha pl \end{bmatrix} \right\} \right]$	* !	*	(*)	

Baković (2009)

recall the point

- I have argued that the celebrated distinction between proper inclusion and overlap is a spurious one.
 - All that matters is *conflict*, and how it is resolved.

Thank you.