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Learning from Multiple Cues

• Linguistic problems can have multiple 
partially informative cues

• Need for models that learn to use cues 
jointly



The log-linear multi-cue model

• General computational model for 
learning structures from multiple cues

• Specific implementation in word 
segmentation using transition probabilities 
and stress patterns



Outline

• The Multiple-Cue Problem
• Case study: Word Segmentation
• Log-linear multiple-cue model
• Experimental testing



Case Study: Word Segmentation

• Transition probabilities
– p(B|A): probability that, having seen A, you’ll 

see B next
Point to the monkey with the hat

p(key|mon) = 1 p(hat|the) = 1/2

– Lower TP suggests separate words
– 8 month old infants use TPs to segment 

artificial languages (Saffran et al 1996, a.o.)



Case Study: Word Segmentation

• Stress patterns
– English has trochaic (Strong-Weak) bias

Double, double, toil and trouble;
Fire burn and cauldron bubble

– 90% of content words start strong (Cutler & 
Carter 1987)

– 7.5 month old English learners segment 
trochaic but not iambic words (Jusczyk et al 
1999)



Existing segmentation models

• Single cue-type (phonemes)
– Bayesian MDL models (Goldwater et al 2009)

– PUDDLE (Monaghan & Christiansen 2010)

• Multi cue-type (phonemes & stress)
– Connectionist (Christiansen et al 1998)

– Algorithmic (Gambell & Yang 2006)



Why a log-linear model?

• Ideal learner model; other multi-cue 
models aren’t

• Effective in other linguistic tasks (Hayes & 
Wilson 2008, Poon et al 2009)

• More flexible than other models
– new cues become new features
– overlapping cues are easy to incorporate



• Feature functions fj map (W,S) pairs to real 
numbers

• “Learning” means finding good real 
number weights λ for features

• Model learns a probability distribution

Log-linear modelling

Weighted sum 
of feature fns



mommy ate it
mmy|mo:1

SW:1, S:2

mommy:1, ate:1, it:1

length:10

• Transition probabilities
– Bigram counts within words

• Stress templates
– Stress “word” counts

• Lexical
– Word counts

• MDL Prior
– Lexicon length

Feature functions



“Normalizing” the probability

• Probabilities need to be normalized
• Usually divide by sum
• But this sum is intractable

Normalization 
constant
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Contrastive estimation
(Smith & Eisner 2005)

• Contrast set as focused negatives
– Want to put probability mass on grammatical 

outcomes
– AND remove mass from ungrammaticals

• Good contrast sets can cause quicker 
convergence



Our contrast set

• Set of all corpora from transposing two 
syllables in observed corpus

mommy ate it

mmymo ate it

moate mmy it

mommy it ate

Observed 
corpus

Ungrammatical 
contrasts

“Grammatical” 
contrast

Note: not the only 
possible contrast set



Learning the weights λ

• Weights estimated using gradient ascent

Expected feature value 
on observed corpus

Expected feature value 
on contrast set

Prior

• Weight increases when feature appears 
in observed, decreases when it appears 
in contrast

• Prior pulls weight toward initial bias µi



Experimental Questions

• Verification: Does it learn the stress biases 
that children exhibit?

• Application: Can these biases explain age 
effects in word segmentation?

Training on child-
directed English

Testing on artificial 
language



Thiessen & Saffran 2003

• Synthesized bisyllabic language, either 
all SW or all WS

• 7 & 9 month olds, learning English
• Preferential looking after exposure
• Words & part words in opposition



Thiessen & Saffran 2003

SW Lang
DApuDObiBUgoDApuBUgo
7 mos: dobi > bibu
9 mos: dobi > bibu

WS Lang
daPUdoBIbuGOdaPUbuGO
7 mos: dobi > bibu
9 mos: dobi < bibu

Both ages segment
by TPs & stress bias

7 mos seg by TPs

9 mos seg against TPs
& with stress bias



Experimental Design

• Train on English child-directed speech
– 1638 words of Pearl-Brent database
– 266 SW, 35 WS; 80% monosyllabic
– Stress determined by CMU Pron Dict
– Utterance & syllable boundaries included, 

non-utterance word boundaries not given
– no prior knowledge given
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Age effects

• Idea: older infants have stronger 
confidence in language parameters

• Strength of learned priors increases to 
simulate increased linguistic experience

prior strength prior value



Age effects
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Conclusions

• Model learns stress bias from 
unsegmented data

• Model shows similar behavioral change 
to infants learning a language

• Behavioral change can result strictly from 
exposure, not a change in the 
segmentation method



Future Extensions

• Expand set of cues (e.g., phonotactics)
• Additional experimental applications
• Move into other linguistic problems



Thank you!

gdoyle@ling.ucsd.edu
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