A reanalysis of glottal stops and glottalization in English
Marc Garellek, Department of Linguistics, University of California, Los Angeles
marcgarellek@ucla.edu

Background
- Glottal stops in North American English occur in 3 environments:
 1. As an allophone of /l/, e.g. ‘button’ [baʔn].
 2. With simultaneous coda stop closure, e.g. ‘cat’ [kʰæʔt].
 3. Optionally before vowel-initial words, e.g. ‘apple’ [ʔæpl].
 - This is the only position studied here.
- Many factors influence the occurrence of glottal stops:
 - Prosodic, lexical, segmental, sociolinguistic factors.
 - It is still unclear which factors are most important in predicting where glottal stops occur.
- Most studies on glottal stop distribution rely on visual inspection of voicing:
 - Irregularity = ‘glottalization’.
 - The irregularity is often assumed to be a lenited glottal stop.
 - But is every case of irregularity a glottal stop?

Research Goals
- To determine which factors are most important in predicting glottal stop occurrence.
- To test which cases of voicing irregularity are in fact due to glottal stops.

Method
- Word-initial vowels and sonorants [m, n, ñ, l, w, j] were extracted from Boston University Radio News Corpus.
 - For sonorant-initial words, the following vowel was also extracted (Massachusetts).
 - Analyzed 2658 tokens from 2 female and 2 male newscasters.
 - Two transcribers coded for presence of a full glottal stop [ʔ]:
 - [ʔ] = period of silence followed by a burst and onset of phonation.
 - Disagreements between transcribers were resolved by the author.
 - Transcribers also coded for a variety of factors:
 - Segment type, vowel height, vowel backness, vowel tenseness.
 - Lexical frequency, content vs. function word, previous and following words.
 - Whether target segment was prominent, preceding and following break index, preceding pause, preceding irregularity.
 - Break index ‘5’ = Breath group.
 - All initial vowels and sonorants were extracted and voice quality measures were obtained using VoiceSauce:
 - H1*-H2* = acoustic correlate of glottal constriction.
 - Lower values for increased constriction.
 - CPP = noise measure.
 - Lower values when signal is noisier and/or less periodic.

Results
- The most important predictors of [ʔ] are preceding break index and prominence.
 - Prominence alone accounts for 75% of instances of full glottal stops.

What about incomplete glottal stops?
- In the same contexts, prominent initial vowels also have lower H1*-H2*:
 - Acoustic support for glottal constriction, consistent with the presence of an incomplete glottal stop.

But for all segments, phrase-initial voicing is less periodic.
- Even for those that are never be preceded by [ʔ]: inconsistent with presence of a glottal stop.

Discussion
- Glottal stops in English are dependent on prosody.
 - Prominence is responsible for most glottal stop gestures.
 - Higher domains mostly ensure that the gesture is fully realized.
- Higher prosodic domains are also responsible for irregular voicing that is inconsistent with a glottal stop gesture.
 - Decrease in periodicity.
 - Ongoing study shows decrease in vocal fold contact using electroglottography.

Voicing irregularity at phrase onsets looks similar to phrase-final creak:
- Phrase-final creak also shows decrease in periodicity and vocal fold contact.
- So phrase-initial voicing irregularity might be another type of creak.

Conclusions
- Glottal stops before vowel-initial words are mostly predicted by prosody.
- Not all irregular voicing during word-initial vowels should be treated as a realization of a glottal stop.

References