Acoustic comparison of /t/ glottalization and phrasal creak

Marc Garellek and Scott Seyfarth

Department of Linguistics, UC San Diego
mgarellek@ucsd.edu

Introduction

- In American English, creaky voice has several linguistic origins, such as:
 - /t/ glottalization – about [əbər]/
 - Phrasal creak – creaky voice that is prosodically conditioned, e.g. phrase-final creak.
- Different sources of creaky voice can co-occur on a single word (Fig. 1).

Fig 1: ‘about’ with glottalization/ creak

• Listeners can distinguish minimal pairs like glottalized ‘motley’ [məˈlɪ] and creaky ‘Molly’ [mɔlɪ] (Garellek 2015).
 - This suggests different articulatory mechanisms and acoustic realizations.

Research questions:

- Do different linguistic sources of creaky voice have distinct articulations and acoustic attributes?
- Part of a broader effort towards taxonomy of types of creaky voice based on their acoustic characteristics and uses in language (e.g. Keating et al. 2015).

Corpus and measures

- 40 Ohioan speakers from Buckeye Corpus (Pitt et al. 2007), gender-balanced.
- Words with coda /t/ in simple codas, realized as [t] or [ʈ] (annotations from corpus, hand-checked).
- Phrasal creak was identified based on corpus log files, hand-checked.
- Vowel before /t/ was analyzed

<table>
<thead>
<tr>
<th>Measure</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1*-H2*</td>
<td>Difference in amplitude between H1 & H2</td>
</tr>
<tr>
<td>H2*-H4*</td>
<td>Difference in amplitude between H2 & H4</td>
</tr>
<tr>
<td>H1*-A1*</td>
<td>Difference in amplitude between H1 & harmonic nearest F1</td>
</tr>
<tr>
<td>H1*-A2*</td>
<td>Difference in amplitude between H1 & harmonic nearest F2</td>
</tr>
<tr>
<td>H1*-A3*</td>
<td>Difference in amplitude between H1 & harmonic nearest F3</td>
</tr>
<tr>
<td>H4*-2K*</td>
<td>Difference in amplitude between H4 & harmonic nearest (-2K)</td>
</tr>
<tr>
<td>2K*-5K*</td>
<td>Difference in amplitude between Harmonic & nearest (-2K) harmonic nearest 5000 Hz</td>
</tr>
<tr>
<td>FO</td>
<td>Fundamental frequency</td>
</tr>
<tr>
<td>CPP</td>
<td>Centripetal peak prominence</td>
</tr>
<tr>
<td>HNR05</td>
<td>Harmonics-to-noise ratio <500 Hz</td>
</tr>
<tr>
<td>SHR</td>
<td>Subharmonics-to-harmonics ratio</td>
</tr>
</tbody>
</table>

- Measures correlated with common properties of creaky voice, relative to modal voice:
 - Lower spectral tilt (H1*-H2* through \(-2K\)–5K*]
 - Lower f0
 - Lower periodicity (CPP, HNR05)
 - Stronger subharmonics (SHR)

- Each measure was standardized within speaker, outliers removed (~20% of total data).
- In total, 8751 vowels were analyzed:
 - Non-creaky = 7665; Creaky = 1086
 - [t] = 3253; [ʈ] = 5498

- For each measure, we included average value and change in measure from first to final third of vowel.

Analysis

- Linear discriminant analysis (LDA): contribution of the acoustic measures to the identification of glottal stops and phrasal creak.

Confusion matrix from LDA:

<table>
<thead>
<tr>
<th>Actual</th>
<th>Non-creaky</th>
<th>Creaky</th>
<th>Non-creaky</th>
<th>Creaky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-creaky</td>
<td>1803</td>
<td>144</td>
<td>631</td>
<td>89</td>
</tr>
<tr>
<td>Creaky</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Non-creaky</td>
<td>1057</td>
<td>214</td>
<td>4098</td>
<td>573</td>
</tr>
<tr>
<td>Creaky</td>
<td>7</td>
<td>16</td>
<td>49</td>
<td>45</td>
</tr>
</tbody>
</table>

Discussion

- Glottalization shows large drop in periodicity over course of vowel.
- As expected, phrasal creak is characterized by lower f0.

Fig 4: Changes in CPP over vowel

- Given that listeners are sensitive to pitch and noise measures (Garellek et al. 2016), listeners likely use these characteristics to differentiate different types of creaky voice.

- Spectral tilt measures less effective predictors of creak/glottalization, perhaps due to variability in realization of creak:
 - Some speakers show increase in spectral tilt measures, consistent with vocal fold spreading (cf. Slifka 2006).

Acknowledgments

Thanks to Morgan Rose Bacon, Julia Dinitzak, Hilda Parra, Alexander Wang, Stefan Wondzisz, and Tanya Otto for help with coding.

References