

UC San Diego

Tense voice and the role of non-contrastive elements in sound change

Marc Garellek, UC San Diego Jianjing Kuang, UPenn Osbel López-Francisco, UNAM-Iztacala Jonathan D. Amith, Gettysburg College

Sound change involving non-modal phonation types

• When non-modal phonation types undergo a sound change, what do they change *into* ? Why?

- Goal: explore the role of secondary correlates of phonation in sound change *out of* non-modal voice
 - In particular, we focus on languages with contrastive tense voice (vs. lax/modal)

Sound change via cue shifts

- Multiple co-varying cues for a phonological contrast
- Sound change occurs when the relative weighting shifts

Tense voice

- † glottal constriction
- Absence of strong creak; voicing is regular

MDS Dimension 1

Approx. Modal <-> Non-modal

Keating et al., to appear Lg 2023(2)

4

Languages of study

	Во	Southern Yi (SY)	Zongozotla Totonac (ZT)
Family	Sino-Tibetan	Sino-Tibetan	Tepehua-Totonac
Location	Yunnan, China	Yunnan, China	Puebla, Mexico
Speakers in sample	9	12	8
Word pairs	~40	~40	8
Phonation contrast	tense vs. lax	tense vs. lax	tense vs. modal
Tone language?	Y	Y	N

Functional aspects of contrast

	Во	Southern Yi (SY)	Zongozotla Totonac (ZT)
Number of minimal pairs	Many	Many	Few
Phonation restrictions	?	?	Immediately word-final *Vֵ# > V?#
Morphological function	?	?	Associated with 2P
Robustness of contrast across varieties	Strong	Strong	Weak

Sample pairs

_	Tense	Non-tense (lax for Bo, SY; modal for ZT)	
Во	[ng -] 'deep, drop of oil'	[nạ -] 'black'	
SY	[ng -] 'handful'	[nạ -] 'stick'	
ZT	[pagt] 's/he broke it'	[paq+] 'it blossomed'	

What acoustic measures distinguish tense voice from the other phonation type?

- F0, fundamental frequency (↑ with high-pitched tense voice)
 - Stiffness of the vocal folds
- F1, first formant freq (↑ with register-like tense voice)
 - Constriction of the pharynx
- H1*-H2*, spectral tilt measure (+ with increased constriction)
 - Constriction of the glottis

Results: H1*-H2*

Summary of results by language

• ZT: tense shows ↓H1*-H2*, quantitatively weaker effect than for Bo, SY

Implications for sound change

- What are the secondary correlates to phonation contrast?

 Bo: just higher f0
 SY: just higher F1
 ZT: none (?)
- (Lack of) 2ry correlates suggest following paths of sound change:
 - o *Tense > higher pitch (tone split)
 - o *Tense > lower vowels (vowel shift; see Kuang & Cui 2018 for SY)
 - o *Tense > Ø (loss of contrast)

Coarticulatory cues for tense voice

- Constriction in the pharynx leads to retracted tongue root
- Stiffness in the vocal folds leads to a higher f0
- These lead to different paths of sound change!

Implications for sound change

- (Lack of) 2ry correlates suggest following paths of sound change:
 - o *Tense > higher pitch (tone split)
 - o *Tense > lower vowels (vowel shift, ATR-like split)
 - o *Tense > Ø (merger with non-tense, loss of contrast)
- These sound changes are reported for phonation types (if not for tense voice specifically)

Phonation > (More complex) tone system Four tone system \rightarrow eight tone system in Shaoxing Wu

Phonation > (More complex) tone system Four tone system \rightarrow eight tone system in Shaoxing Wu

Kuang et al. (2018)

Phonation > More complex vowel system Northern (Nuosu) Yi

Edmondson et al. (2017) https://doi.org/10.1017/S0025100315000444

Examples from three Yi languages

	Tense register	Lax register
Phonation primary		
Phonation + vowel quality		
Vowel quality only		

Data from Kuang and Cui (2018); Kuang (2011)

Loss of contrast Sierra Totonac (including Zongozotla)

	Zapotitlán	Zongozotla	Coatepec
ʻpig' *paৣ∫niֵ	pajnį	paۣ∫n <mark>i</mark> ?	p <mark>a</mark> ∫n <mark>i</mark> ?

McQuown (1940), Aschmann (1946), MacKay & Trechsel (2018), Dawson et al. (2022)

Summary

- Tense voice = phonation type with increased constriction

 But where the constricted quality is weaker than for prototypical creaky voice
- Distinct secondary correlates, and (apparent) lack of correlates, likely play a role in different paths of phonation loss
- Functional factors likely play a role in the loss of phonation suggested for Zongozotla Totonac vs. Bo and Southern Yi