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1. Introduction
In the past four decades, the field of sentence processing research has generated
a number of models of the incremental operation of the human sentence proces-
sor. One assumption common to most of these theories is that the difficulty of a
word is determined by the possible syntactic structures of the preceding words, and
thus, the difficulty of a word should be unaffected by ungrammatical analyses of
the preceding words. Put formally, the difficulty of word wn of a sentence is deter-
mined only by the grammatical syntactic structures covering the preceding words
w1 · · ·wn−1(≡ wn−1

1 ). Recent results by Tabor, Galantucci, and Richardson (2004),
however, appear to show evidence of a case where a syntactic structure which is
not possible given wn−1

1 nevertheless influences the difficulty of wn. They attribute
such effects to ‘merely locally coherent’ syntactic structures and term such im-
possible structures local coherences. Follow-up studies by Konieczny (2005) and
Konieczny and Müller (2006, 2007) provide further evidence that these impossi-
ble structures are being constructed and even semantically evaluated. These results
have been taken to support a small class of dynamical systems models of sentence
processing (e.g., Tabor and Hutchins 2004), in which, crucially, structures which
are not possible given the current input are nevertheless constructed and compete
with other, tenable structures. Unfortunately, the existing theories in this class have
a large number of interacting free parameters, making interpretation somewhat diffi-
cult and leaving unspecified how to scale up such a system to make broad-coverage
reading time predictions. This paper fills two gaps in the literature on local coher-
ences. First, it demonstrates from two experiments with an eye-tracking corpus that
effects of local coherences are evident in the reading of naturalistic text. Second,
it describes a new computational model of local coherences that is motivated by a
view of sentence processing as updating prior beliefs over syntactic structures.

1.1. Local Coherences: The Initial Result
The first study to report effects of local coherences is described in Tabor, Galan-
tucci, and Richardson (2004). In Experiment 1, they use a self-paced reading task
and materials containing relative clauses (RCs) attached to nouns in non-subject
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position as in (1).

(1) a. The coach smiled at the player tossed a frisbee by . . .
b. The coach smiled at the player who was tossed a frisbee by . . .
c. The coach smiled at the player thrown a frisbee by . . .
d. The coach smiled at the player who was thrown a frisbee by . . .

Their experimental design crossed RC reduction with verb ambiguity. RCs are ei-
ther reduced (1a,c) or unreduced (1b,d), and the RC verb is either lexically ambigu-
ous between a past tense active and a past participle (1a–b), or is unambiguously a
past participle (1c–d).

Tabor, Galantucci, and Richardson point out that in one of these four conditions
(1a) there is a locally coherent string the player tossed a frisbee. Out of context
(e.g., if it were starting a sentence) this string would have a likely parse in which the
player is the agent of tossed and a frisbee is the theme. Given the preceding context,
however, the player is in non-subject position and thus this parse is impossible. That
is, given the preceding context, the player tossed the frisbee must begin a reduced
RC, and there is no local ambiguity. Thus, so long as ungrammatical analyses are
not considered, (1a) should be no more difficult than the other examples, except
insofar as ambiguous verbs are harder than unambiguous verbs, and reduced RCs
are harder than unreduced RCs. That is, the prediction for reading times in the
tossed a frisbee by region from most theories of sentence processing would be to
get the two main effects of RC reduction and verb ambiguity.

Tabor, Galantucci, and Richardson, however, predict an interaction such that
(1a) will have added difficulty above and beyond these two effects, because of the
interference from the locally coherent parse of the player tossed a frisbee. Con-
cordant with their predictions, they find an interaction in the tossed a frisbee by
region, such that reading times for (1a) are super-additively high, suggesting that
ungrammatical analyses are considered by the human sentence processor.

1.2. Local Coherences: Theories
With the results showing effects of local coherences in mind, we can ask the ques-
tion of what sorts of theories predict these effects. This section briefly describes two
recent examples of such theories. The first involves dynamical systems models to
explain the effects, while the second uses a mathematical model of the combination
of bottom-up and top-down probabilistic information.

Tabor and Hutchins (2004) describes the SOPARSE (self-organized parse)
model, in which reading a word activates a set of lexically anchored tree fragments.
These tree fragments then compete, spreading activation to compatible fragments
and inhibiting incompatible fragments, such that the system eventually stabilizes
to the correct parse. Reading times for each word can then be modeled as the time
the system takes to stabilize after reading a word. Stabilization takes longer for lo-
cally coherent regions because the locally coherent parse is created and competes
with the globally grammatical parses, thus nicely explaining the results on local
coherences.
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There are, however, unsolved issues with this model. The model has a number
of free parameters, relating to the equations used for the competition, the method by
which links between fragments are formed, as well as the question of precisely what
tree fragments a given word will activate. While Tabor and Hutchins (2004) works
out these questions in detail for the types of sentences they model, it is unclear how
to scale the model up to make predictions for arbitrary types of sentences. That is,
there is no principled system for setting the three types of parameters mentioned,
and no clear interpretation of their values. The model put forward in this paper is
an attempt to remedy this situation.

A recent proposal by Gibson (2006) can also explain some of the local coher-
ence results. Gibson’s proposal is that part-of-speech ambiguities have a special
status in parsing; in effect, lexical part-of-speech ambiguities can be thought of as
one-word local coherences. In this model, a lexical bias (LB) is created for each
part-of-speech tag ti of word w by multiplying together the context-independent
probability of ti given the word w (the bottom-up component) by a smoothed prob-
ability of the tag given the context (the top-down component):

LB(ti) = P (ti|w)Ps(ti|context) (1)

Ps is smoothed by adding .01 to the probability of every tag t ∈ T , such that it
no longer sums to one, and is thus not a true probability function. Then, a true
probability is calculated for each tag ti by normalizing the LB terms:

P (ti) =
LB(ti)∑

t∈T

LB(t)
(2)

Gibson describes two ways in which the resultant probabilities can be used to pre-
dict difficulty, one for serial and one for parallel models. For serial models, the
parser stochastically selects a part-of-speech for the current word from the P (t)
distribution. When the part-of-speech it selects cannot be integrated into the current
syntactic representation, difficulty occurs from reanalysis. In a parallel model, the
parser maintains all possibilities for the part-of-speech of the word, weighted by
P (t). In cases where multiple parts of speech have positive probabilities, competi-
tion ensues.

Because the top-down probabilities are smoothed to allow for all possible parts-
of-speech, any word which is lexically ambiguous will be more difficult to process,
regardless of whether it is ambiguous or not in its context. This can thus explain
some of the difference between the ambiguous and unambiguous verbs in Tabor,
Galantucci, and Richardson (2004). It is not clear, however, under such a model
why the super-additive interaction would obtain. Furthermore, such a theory cannot
at all explain the semantic effects of local coherences, such as those described in Ta-
bor, Galantucci, and Richardson’s (2004) Experiment 2, or the visual world results
of Konieczny and Müller (2006, 2007). In addition, Gibson’s model is a bit under-
specified: he does not discuss how the top-down probabilities are calculated, nor
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what the precise linking hypothesis is between the final P (t) and reading times. Fi-
nally, it is not at all clear why the top-down expectations should be smoothed, since
the smoothing actually has negative consequences on the processor’s performance.

1.3. Goals
The goals of this paper are twofold. The first goal concerns the empirical status
of effects of local coherences. All of the extant results on the phenomenon involve
controlled experiments, most of which crucially involve very rare types of construc-
tions. For example, the result of Tabor, Galantucci, and Richardson (2004) relies on
reduced relative clauses formed from a passivization on the recipient of a ditransi-
tive construction. Such a type of sentence is quite rare in English, and thus might
not give useful insight into the normal operation of the sentence processor. This
paper presents the results of two experiments with a corpus of eye-tracking data
from the reading of newspaper articles demonstrating effects of local coherences
in the reading of naturalistic sentences. This establishes the ecological validity of
the study of local coherences, and underscores the need for a theory of local coher-
ences which makes broad-coverage predictions. The second goal of this paper is to
present a model of the effects of local coherences that combines the strengths of
Gibson’s (2006) and Tabor and Hutchins’s (2004) models. This model accounts for
phrasal-level effects of local coherences (as Tabor and Hutchins), but does so using
general quantities that can be calculated for any sentence type (as Gibson) by using
a general probabilistic parser that can operate on any SCFG. The remainder of this
paper is divided into four sections. The next two sections present the two corpus
experiments. Following that, we present our model and conclude.

2. Experiment 1
The basic strategy of the two corpus experiments is to build a regression model
of the reading times on each word in an eye-tracking corpus. Included in the re-
gression model for each experiment is a factor quantifying the occurrence of local
coherences. Establishing that local coherences have an effect on reading times is
then merely a matter of assessing the significance of the local coherences factor in
the model, and assessing the size of that effect is merely a matter of inspecting the
coefficient estimate.

The local coherences factor in Experiment 1 is meant to start simple by measur-
ing the effect of one-word local coherences. Although prima facie, one-word local
coherences do not seem to look much like the materials in Tabor, Galantucci, and
Richardson (2004), the reasoning for calling them local coherences is as follows: we
take the definition of a local coherence to be a string of words w that out of context
would suggest one very likely parse, and that parse is impossible (or at least highly
unlikely) in context. We can scale this down to the case wherew is a string of size 1;
that is, out of context, a word w suggests a very likely parse (e.g., a part-of-speech
tag) that is very unlikely or impossible in context. Because a word only has one
part-of-speech in a given sentence, this means we can invert this statement to say
that a one-word local coherence occurs when the only possible part-of-speech tag
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for the word in context is highly unlikely out of context. By making the assumption
that the only possible part-of-speech tag for a word in context can be approximated
by the actual part-of-speech tag the word has in the sentence, we can calculate our
one-word local coherence factor to be an estimate of the context-independent prob-
ability of the actual part-of-speech tag ti for a word wi given just the word P (ti|wi).
This factor will thus be low when there is a strong one-word local coherence.

This particular type of one-word local coherence is predicted to have an effect
by both Gibson’s (2006) and Tabor and Hutchins’s (2004) models. This probability
is actually one of the components in the Gibson theory, which would predict that –
all else being equal – a word wi would be read more slowly as P (ti|wi) decreases.
Just as Gibson’s theory would predict, this factor would assign lower probability to
tossed tagged as a past participle than it would thrown tagged as a past participle. A
dynamical systems model such as Tabor and Hutchins’s makes the same prediction
if we assume that the strength of the lexically-anchored tree fragments correspond-
ing to each part-of-speech vary in strength in proportion to P (ti|wi), which seems
to be a reasonable interpretation of what their model would involve. Of course, this
factor doesn’t capture local coherences at a phrasal level, as Tabor and Hutchins
would predict. The next experiment remedies this situation somewhat by scaling
up this factor by conditioning on two words, and the model given in the paper’s
next section completely eliminates this objection by specifying a theory predicting
phrasal-level local coherences of an arbitrary length.

2.1. Methods
2.1.1. Data
This experiment makes use of the Dundee corpus (Kennedy and Pynte 2005) of eye-
movement data from 10 participants reading 51,000 words each of The Independent
(a British newspaper). To get part-of-speech tags for the corpus, we parsed it using
the Charniak parser (Charniak 2000). From the eye-tracking record given in the cor-
pus, we calculated our dependent measure of first pass times for each word, defined
as the total duration of all fixations on a word prior to having fixated anything to its
right.

2.1.2. Model
We tested the local coherence factor in a linear mixed-effect model (Pinheiro and
Bates 2000; for a psycholinguistic introduction see also Baayen, Davidson, and
Bates 2008) of the first pass times on each word, containing 11 fixed effect control
factors and participant as a random effect, as in Demberg and Keller (2008). Co-
efficient estimates and significance levels were estimated by Markov chain Monte
Carlo (MCMC) sampling (Baayen, Davidson, and Bates 2008).

2.1.3. Control Variables
We took our control factors from Demberg and Keller (2008). They included lin-
guistic properties such as word length in characters, the logarithm of word fre-
quency per million as estimated from the British National Corpus (BNC), bigram
probability (P (wi|wi−1); also estimated from the BNC), and position in the sen-



Klinton Bicknell, Roger Levy, & Vera Demberg

tence in words. In addition, they included lexicalized and unlexicalized syntactic
surprisal (− logP (wi|wi−1

1 )), as well as eye movement properties such as the land-
ing position with respect to the word, the number of characters between last fixation
and current fixation, and whether the previous word was fixated.

2.1.4. Factor Estimation
For each word-tag pair in the Dundee corpus, we estimated P (ti|wi) from a
Charniak-parsed version of the BNC. We used two versions of the factor: Pm was
the maximum likelihood estimate (MLE) and Ps was a smoothed version. Ps was
calculated by smoothing the MLE with a type-averaged distribution over part-of-
speech tags. Specifically, a type-averaged distribution Ppr was calculated for a given
tag ti as

Ppr(ti) =

∑
w

Pm(ti|w)

|w|
(3)

where w ranges over word types (as opposed to tokens). The smoothed probability
Ps of a tag ti given a word wi is then calculated to be

Ps(ti|wi) =
c(ti, wi) + β(Ppr(ti))

c(wi) + β
(4)

where c(ti, wi) returns the count of wi tagged as ti in the corpus, and β is set to
minimize Dundee corpus perplexity.

2.1.5. Log Transform
In addition to the probabilities themselves, the base-2 logarithms of both versions
of the factor, Pm and Ps, were also entered into the regression.

2.1.6. Data Selection
We excluded from the analysis any word in the Dundee corpus that had punctuation,
contained numbers, did not contain letters, occurred as the first or last word of a line,
or that did not occur in the BNC. In addition, we excluded the first-pass times on
any word which had a first-pass time of zero.

2.2. Results
The better fit to the data was achieved by the log-transformed versions of the factor.
The logPm factor had a coefficient estimate of -0.71 (p < .0001), and the logPs

factor had a coefficient estimate of -0.80 (p < .01). By contrast, the linear fit version
of Pm had an insignificant coefficient estimate of -0.84 (p = .42), and Ps had a
coefficient estimate of -2.31 (p < .05). To better visualize the results, a natural
spline regression was performed on Ps with 11 equally spaced knots. The result is
shown in Figure 1 with bootstrapped 95% confidence intervals.
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Figure 1: Natural spline regression on Ps(ti|wi) with 11 equally spaced knots. 95%
confidence intervals are bootstrapped.

2.3. Discussion
Since the better fit was achieved using the logarithmic version of the factors, we
focus here on their interpretation. For both Pm and Ps, doubling the probability of
a tag reduces the first-pass time by about 7 or 8 tenths of a millisecond. Looking at
the spline regression in Figure 1 reveals that most of the differences it is accounting
for exist for probabilities under 0.2. While this seems to be a somewhat small effect,
the significance levels of these factors reveal that the effects are reliable. This pro-
vides the first evidence for the effects of local coherences (albeit local coherences
consisting of one word) in the reading of naturalistic text.

3. Experiment 2
The second experiment is very similar to the first. In this case, however, we test for
effects of two-word local coherences, again at the part-of-speech tag level, using as
our factor an estimate of P (ti|wi

i−1). To see how this factor is a measure of two-
word local coherences, consider again the definition of local coherence effects we
used above: a string of words w that out of context would suggest one very likely
parse which is impossible (or at least highly unlikely) in context. If we again invert
that definition, because part-of-speech tags are mutually exclusive, we see that local
coherence effects occur when the only possible part-of-speech tag for a word in a
sentential context is highly unlikely out of that context. Once again, we are using
the actual part-of-speech tag of a word as a crude estimate of the only possible
part-of-speech tag.

Take as an example a two-word sequence from Tabor, Galantucci, and Richard-
son, player tossed. Out of context this string is likely to have a parse where tossed is
a past tense verb and very unlikely to have a parse where tossed is a past participle.
Thus, this factor would predict reading tossed as a past participle to be especially
difficult given that the previous word was player. Dynamical systems theories such
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as Tabor and Hutchins (2004) would also predict a word to be read more slowly
as the P (ti|wi

i−1) decreases, since the lexically-anchored tree fragments for the two
words should cooperate to cause a large amount of interference to the globally cor-
rect parse. While Gibson’s theory would not predict the previous word to have an
effect, this model still looks very similar to the sort of integration process he pro-
poses, and may be one natural way to scale his theory up to the multi-word case.

3.1. Methods
3.1.1. Data, Model, and Control Variables
The data, model, and control variables used for Experiment 2 are the same as for
Experiment 1.

3.1.2. Factor Estimation
For each word-word-tag triplet in the Dundee corpus, we estimated P (ti|wi

i−1) from
the Charniak-parsed BNC. As in Experiment 1, we used two versions of the factor:
Pm was the maximum likelihood estimate (MLE) and Ps was version smoothed
from the MLE using the same method as in Experiment 1.

3.1.3. Log Transform
As before, the base-2 logarithms of Pm and Ps were also entered into the regression.

3.1.4. Data Selection
As in Experiment 1, we excluded from the analysis any word in the Dundee corpus
that had punctuation, contained numbers, did not contain letters, or occurred as the
first or last word of a line. Words were also excluded when the bigram of that word
and the previous word did not occur in the BNC. In addition, as in Experiment 1,
we excluded the first-pass times on any word which had a first-pass time of zero.

3.2. Results
As in Experiment 1, the better fit to the data was achieved by the log-transformed
versions of the factors. The logPm factor had a coefficient estimate of -0.43 (p <
.0001), and the logPs factor had a coefficient estimate of -4.10 (p < .0001). The
linear fit version of Pm had a coefficient estimate of -2.94 (p < .05), and Ps had
a coefficient estimate of -17.56 (p < .0001). As before, a natural spline regression
performed on Ps is shown in Figure 2 with bootstrapped confidence intervals.

3.3. Discussion
Inspecting the coefficients for the better-fitting logarithmic versions of the factor
reveals that this factor has a much larger effect that of Experiment 1. The coefficient
estimate for the smoothed version indicates that doubling the probability of a tag
reduces first-pass time by only about 4 tenths of a millisecond. The reason that this
coefficient is even smaller than in Experiment 1 is probably simply because the
probability function we are estimating is much more sparse than before, and thus
smoothing is necessary. The coefficient estimate for the smoothed version of the
factor indicates that doubling the probability of a tag reduces the first-pass time
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Figure 2: Natural spline regression on Ps(ti|wi
i−1) with 11 equally spaced knots.

95% confidence intervals are bootstrapped.

by over 4 ms. Inspecting the results of the spline regression in Figure 2 indicates
that this trend is true across the range of probability. Again, the significance levels
indicate that this effect is highly reliable in this dataset. This provides evidence
for effects of multi-word local coherences in the reading of naturalistic text, and,
because of the effect size, suggests that such effects are an even more important
part of sentence processing than effects of single-world local coherences.

4. The Model
The demonstration in Experiment 2 that the effects of multi-word local coher-
ences appear in the reading of naturalistic text underscores the need for a theory
of phrasal-level local coherences which can make broad-coverage predictions. This
section presents one such model. The basic intuition behind it is that incrementally
processing a sentence can be conceptualized as a process of updating one’s beliefs.
Such an analogy has been used to motivate surprisal-based theories of sentence
processing (Hale 2001; Levy 2008), where beliefs about the structure of a sentence
after seeing the first i − 1 words in the sentence wi−1

1 are updated upon encounter-
ing wi. In this case, the surprisal of a word (− logP (wi|wi−1

1 )) is equivalent to the
Kullback-Leibler divergence of the beliefs after wi from the beliefs before (Levy
2008). Our model focuses on another belief-update process in sentence processing:
updating beliefs about the structures that a string of words is likely to have inde-
pendent of context to beliefs about what structures it is likely to have in context.

A bit more formally, it views the process of integrating a string of words wj
i into

a sentence as beginning with a ‘bottom-up’ prior distribution of syntactic structures
likely to span wj

i and integrating that with ‘top-down’ knowledge from the previous
words in the sentence wi−1

1 in order to reach a posterior distribution condition-
ing on wj

1 over which structures actually can span wj
i . This belief update process

can be viewed as a rational reconstruction of the Tabor and Hutchins (Tabor and
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Hutchins 2004) model, where – instead of the system dynamics of competition be-
tween arbitrary tree fragments – differences between prior and posterior probability
distributions over syntactic structures determine processing difficulty.

More formally still, when integrating wj
i into a sentence, for each syntactic cat-

egory X , we can define the prior probability conditioned only on wj
i that wj

i will
form the beginning of that category, i.e., that an X exists which begins at index i
and spans at least through j:

Prior: P (Xk≥j
i |wj

i ) (5)

It is important to note here that this prior probability is conditional only on the value
of wj

i and not the values of i or j; that is, in the prior probability, i and j should
be interpreted merely as a way to coindex the start and end points of the string of
words being integrated with a category X potentially spanning them, and not as
making reference to position in the full sentence string.

For each categoryX , this prior probability will be updated to the posterior prob-
ability of that category spanning wj

i given all the words seen so far:

Posterior: P (Xk≥j
i |wj

1) (6)

In the equation for the posterior, of course, the indices i and j are positions in the
sentence string, and not merely coindices.

Given these prior and posterior beliefs, we predict difficulty to arise in cases
where the prior requires substantial modification to reach the posterior, that is, cases
in which the prior and posterior make substantially different predictions for cate-
gories. A strong local coherence will have sharply different prior and posterior dis-
tributions, causing difficulty. We measureMij , the amount of modification required,
as the K-L divergence of the prior from the posterior summed over syntactic cate-
gories. That is, if N is the set of non-terminal categories in the grammar, the size of
the belief update is modeled as

Mij
def
=
∑
X∈N

D
(
P (Xk≥j

i |wj
1) ||P (Xk≥j

i |wj
i )
)

(7)

In Bicknell and Levy (2009), we show how to compute Mij by using Bayesian
inference on quantities calculated in ordinary probabilistic incremental Earley pars-
ing with a stochastic context-free grammar (SCFG). Furthermore, we present the
results of a computational experiment showing that our model makes the correct
predictions on the original local coherences experiment of Tabor, Galantucci, and
Richardson (2004).

5. Conclusion
This paper has made two contributions to the study of local coherences: a set of
corpus experiments and a new model. The two novel corpus experiments showed
evidence that effects of local coherences consisting of one or two words occur in the
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reading of naturalistic text. The first experiment showed a reliable effect of single-
word local coherences, such as those predicted by the model of Gibson (2006),
and compatible with dynamical systems models such as that of Tabor and Hutchins
(2004). The second experiment showed an even larger effect of two-word local
coherences, such as those predicted by dynamical systems models such as Tabor
and Hutchins (2004). Such results give ecological validity to the study of local
coherences and demonstrate that they are not merely artifacts in the processing of
very rare sentence types. Furthermore, the results suggested that two-word local
coherences appear to be stronger than single-word coherences.

This latter observation led to the description of a mathematical model predicting
where effects of local coherences will occur in arbitrary sentences. The fundamental
insight of this model is that effects of local coherences can be described in terms
of updating prior beliefs about the structures a new string of words is likely to take
independent of context into posterior beliefs about what structures it is likely to take
given contextual information. This model predicts local coherence effects to occur
whenever prior and posterior beliefs are substantially different.

In contrast to Gibson’s model, this model can account for all existing results on
phrasal-level local coherences. In contrast to the dynamical systems models, it does
not require assuming a rather arbitrary parsing mechanism with a large number of
free parameters, but rather is described in terms only of probabilities in a grammar
(which can be estimated in a principled and straightforward way). Future work will
test that model’s predictions on the reading of naturalistic text in a similar way to
Experiments 1 and 2.
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