A Fully Rational Model of Local-coherence Effects

Modeling Uncertainty about the Linguistic Input in Sentence Comprehension

Roger Levy
UC San Diego

CUNY — 14 March 2008
Incrementality and Rationality

- Online sentence comprehension is hard
- But lots of information sources can be usefully brought to bear to help with the task
- Therefore, it would be *rational* for people to use *all the information available*, whenever possible
- This is what *incrementality* is
- We have lots of evidence that people do this often

“Put the apple on the towel in the box.” (Tanenhaus et al., 1995)
But…what do you think of this sentence?

The coach smiled at the player tossed the frisbee.

…and contrast this with:

The coach smiled at the player thrown the frisbee.
The coach smiled at the player who was thrown the frisbee.

(Tabor et al., 2004)
Why is this sentence so interesting?

- As with classic garden-path sentences, a part-of-speech ambiguity leads to misinterpretation
 - *The horse raced past the barn…*
 - verb?
 - participle?

- But here, context “should” be enough to avoid garden-pathing
 - *The coach smiled at the player tossed…*
 - verb?
 - participle?

- Yet the main-verb POS “interferes” with processing
Behavioral correlates (Tabor et al., 2004)

- Also, Konieczny (2006, 2007) found compatible results in stop-making-sense and visual-world paradigms

- **These results are problematic for theories requiring global contextual consistency** (Frazier, 1987; Gibson, 1991, 1998; Jurafsky, 1996; Hale, 2001, 2006)
Contextual constraint & rationality

• Let’s recast the problem in even more general terms

• *Rational* models of comprehension: the comprehender uses *all the information currently available*

• In local-coherence sentences, the comprehender seems to be systematically *ignoring* available information

• Local-coherence effects’ challenge: *to what extent is human sentence comprehension rational?*
Existing proposed theories

- Proposed models posit a context-ignoring, bottom-up component of comprehension:
 - Gibson, 2006
 \[P(cat_i | w_i, \text{context}) \propto P(cat_i | \text{context}) P(cat_i | w_i) \]
 - Tabor & Hutchins, 2004; Tabor, 2006
 - Hale, 2007

- To the extent that these models are rational, it can only be in terms of “bounded rationality” (Simon 1957)

- \textit{To what extent do we want to bound the rationality of human sentence comprehension?}
Today’s proposal

• I simply want to argue that it is premature to conclude from local-coherence effects that the parser’s rationality must be bounded in this respect

• There is another possibility that has been overlooked thus far

• Instead of relaxing the assumption about rational use of context, we may instead have misspecified the input representation
Relaxing assumptions about input

- Traditionally, the input to a sentence-processing model has been a *sequence of words*
- But really, input to sentence processor should be more like the output of a word-recognition system

![Image of the coach smiling at the player tossing the frisbee with possible misreadings: couch?, as?, that?, who?]

The coach smiled at the player *tossed* the frisbee

- That means that the possibility of *misreading/mishearing* words must be accounted for
- On this hypothesis, local-coherence effects are about *what the comprehender wonders whether she might have seen*

These changes would make main-verb *tossed* globally coherent!!!
Inference through a noisy channel

- So how can we model sentence comprehension when the input is still noisy?
- A *generative probabilistic grammatical model* makes inference over uncertain input possible
 - This is the *noisy channel* from NLP/speech recognition
 - Inference involves Bayes’ Rule

\[
P(\text{words}|\text{input, grammar}) \propto P(\text{input}|\text{words, grammar})P(\text{words}|\text{grammar}) \\
\propto P(\text{input}|\text{words})P(\text{words}|\text{grammar}) \quad \text{[by assumption]}
\]

Evidence: Noisy input probability, dependent only on the “words” generating the input

Prior: Comprehender’s knowledge of language
How can we represent the type of noisy input generated by a word sequence?

Probabilistic finite-state automata (pFSAs; Mohri, 1997) are a good model

```
vocab = a,b,c,d,e,f
```

"Word 1 is a or b, and I have no info about Word 2"
Probabilistic Linguistic Knowledge

- A generative probabilistic grammar determines beliefs about which strings are likely to be seen
 - Probabilistic Context-Free Grammars (PCFGs; Booth, 1969)
 - Probabilistic Minimalist Grammars (Hale, 2006)
 - Probabilistic Finite-State Grammars (Mohri, 1997; Crocker & Brants 2000)

- In position 1, \{a, b, c, d\} equally likely; but in position 2:
 - \{a, b\} are usually followed by e, occasionally by f
 - \{c, d\} are usually followed by f, occasionally by e
Combining grammar & uncertain input

- Bayes’ Rule says that the evidence and the prior should be combined (multiplied).
- For probabilistic grammars, this combination is the formal operation of intersection (see also Hale, 2006).

![Diagram showing the combination of grammar and uncertain input](image)
Revising beliefs about the past

- When we’re uncertain about the future, grammar + partial input can affect beliefs about what will happen
- With uncertainty of the past, grammar + future input can affect beliefs about what has already happened
word 1
\{b,c\} \{?\}

words 1 + 2
\{b,c\} \{f, e\}

grammar

\begin{verbatim}
0 \rightarrow 1 [b/1, c/1]
1 \rightarrow 2 [b/2.58, c/2.58, d/2.58, e/2.58, f/2.58]
2 \rightarrow 3 [c/0.678061, d/0.415028, e/0.415028, f/2.00003]
3 \rightarrow 0 [b/1.41506, e/0.151996, f/1]
0 \rightarrow 1 [b/1, c/1]
1 \rightarrow 2 [b/2, c/2, d/2, e/2, f/0.415]
2 \rightarrow 3 [c/0.678061, d/0.415028, e/0.415028, f/2.00003]
3 \rightarrow 0 [b/1.41506, e/3.322, f/0.151996]
\end{verbatim}
Ingredients for the model

- To complete our rational model of local coherence effects, we need the following components:
 - A probabilistic grammar
 - A systematic mapping from sentences to noisy (pFSA) inputs
 - A quantified signal of the alarm about representations of the past that is induced by the current word
- I’ll present these ingredients in the form of an experiment on the “classic” local-coherence sentence
1. Probabilistic Grammatical Knowledge

- We can transform a (strongly regular) PCFG into a weighted FSA
- We use the following grammar with surprisal values estimated from the parsed Brown corpus

<table>
<thead>
<tr>
<th>Surprisal</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.30</td>
<td>S → S-base Conj S-base</td>
</tr>
<tr>
<td>0.01</td>
<td>S → S-base</td>
</tr>
<tr>
<td>0.00</td>
<td>S-base → NP-base VP</td>
</tr>
<tr>
<td>3.71</td>
<td>NP → NP-base RC</td>
</tr>
<tr>
<td>0.11</td>
<td>NP → NP-base</td>
</tr>
<tr>
<td>0.00</td>
<td>NP-base → Det N</td>
</tr>
<tr>
<td>2.02</td>
<td>VP → V PP</td>
</tr>
<tr>
<td>0.69</td>
<td>VP → V NP</td>
</tr>
<tr>
<td>2.90</td>
<td>VP → V</td>
</tr>
<tr>
<td>0.00</td>
<td>PP → P NP</td>
</tr>
<tr>
<td>0.47</td>
<td>RC → WP S/NP</td>
</tr>
<tr>
<td>2.04</td>
<td>RC → VP-pass/NP</td>
</tr>
<tr>
<td>4.90</td>
<td>RC → WP FinCop VP-pass/NP</td>
</tr>
<tr>
<td>1.32</td>
<td>S/NP → NP-base VP/NP</td>
</tr>
<tr>
<td>3.95</td>
<td>VP/NP → V NP</td>
</tr>
<tr>
<td>0.10</td>
<td>VP/NP → V</td>
</tr>
<tr>
<td>2.18</td>
<td>VP-pass/NP → VBN NP</td>
</tr>
<tr>
<td>0.36</td>
<td>VP-pass/NP → VBN</td>
</tr>
</tbody>
</table>
2. Sentence ➔ noisy input mapping

- There are lots of possibilities here
- Our implementation: start with the sequence of actually observed words

0 ➔ the ➔ 1 ➔ coach ➔ 2 ➔ smiled ➔ 3

- Make every lexical item (including \(<\text{eps}>\)) probable in proportion to Levenshtein (string-edit) distance

\[
\begin{align*}
\text{Dist}(\text{dog, cat}) &= 3 & \text{Dist}(\text{the, toe}) &= 1 \\
\text{Dist}(\<\text{eps}\>, \text{toes}) &= 4 & \text{Dist}(\text{goth, hot}) &= 2
\end{align*}
\]
3. Error identification signal (EIS)

- **Relative Entropy** (KL-divergence) is a natural metric of change in a probability distrib. (Levy, 2008; Itti & Baldi, 2005)
- In our case, the distributions in question are *probabilities over the previous words in the sentence*
- Call this distribution $P_i(w_{[0,j]})$
- The size of the change in this distribution induced by the i-th word is EIS_i, defined as

$$D \left(P_i \left(w_{[0,i]} \right) \right) \; \| \; P_{i-1} \left(w_{[0,i]} \right)$$

new distribution
old distribution
Error identification signal: local coherences

• Full experiment:
 • Probabilistic grammar with rule probabilities estimated from parsed Brown corpus
 • Lexicon with all \(<\text{tag}, \text{word}>\) combinations of frequency >500 in parsed Brown corpus (plus sentence wds)
 • Error identification signal as defined above

\[EIS = 0.07 \quad EIS = 0.0001 \]

The coach smiled at the player \textit{tossed} \textit{thrown}

• The important part of the change is that \textit{at} can be re-interpreted as \textit{and} or other near-neighbors
But, you may protest…

- Most items in Tabor et al., 2004 did not involve the preposition *at* before the modified noun.
- For example:

 The manager watched a waiter *served/given* pea soup by a trainee.

- But these sentences can also involve revisions of past beliefs—specifically, *that a word has been missed*.
Missed words

- Modeling beliefs about missed words requires only a minor modification to the noisy-input representation.
Missed words (II)

- Experiment 2: stimulus without the preposition *at*

 The manager watched a waiter *served* ...
 The manager watched a waiter *given* ...

 \[EIS = 0.0168 \]
 \[EIS = 0.0117 \]

- The difference in error-identification signal is much smaller, but we still get it
Other potential applications of theory

- “Good-enough” processing representations (Ferreira et al., 2002)

 While Anna dressed the baby played in the crib.

- “Morphological mismatch” processing effects in cases of superficial semantic mismatch (Kim & Osterhout, 2005)

 *The meal *devoured*...*

- Modeling longer-distance regressions in reading of naturalistic text
What the model is still missing

- Lots of things! But a couple of things most sorely missed:
 - Trans-finite-state probabilistic rules (technical, not theoretical shortcoming)
 - Richer probabilistic information sources, such as *plausibility* of noun-verb match (statistical, not theoretical shortcoming)

The bandits worried about the prisoner transported…

The bandits worried about the gold transported…

(Tabor et al., 2004)
Acknowledgements

• Thank you for all your help!
 • UCSD Computational Psycholinguistics Lab:
 • Adam Bickett
 • Klinton Bicknell
 • Gabriel Doyle
 • Albert Park
 • Nathaniel Smith
 • Cyril Allauzen and the rest of the developers of the OpenFst (http://openfst.org) and GRM libraries (http://www.research.att.com/~fsmtools/grm/)
Thank you for listening!

http://idiom.ucsd.edu/~rlevy