Comprehension difficulty reflects an understanding of likely production errors

Harry Tily, Marie-Catherine de Marneffe & Roger Levy
1 Department of Linguistics, Stanford University | Department of Linguistics, UCSD

1. Agreement errors in production

Bock & Miller (1991) find more errors with a mismatching intervening noun:

(a) The keys to the cabinet was rusty
(b) The keys to the cabinet was rusty
(c) The key to the cabinet was rusty
(d) The key to the cabinets was rusty

Number agreement errors are relatively common in production. How do comprehenders deal with erroneous input? We suggest that reading time patterns reflect a rational solution: comprehenders know which kinds of errors are likely, and recover more easily from more probable errors.

2. Comprehension of agreement errors

Pearlmutter et al. (1999) measured reading times on sentences like (2). Correct agreement (2a,b) leads to faster reading, but this interacts with whether the intervening NP has the same (2a,b) or different (2c,d) number.

(a) The key to the cabinet was rusty... (grammatical, match)
(b) The key to the cabinets was rusty... (grammatical, mismatch)
(c) The key to the cabinet was rusty... (ungrammatical, mis-match)
(d) The key to the cabinet was rusty... (ungrammatical, match)

3. Optimal comprehension under uncertainty

Efficient comprehenders should "prepare" for structures according to their probability of occurrence (Hale 2001; Levy 2008a). If the probability of errors in the input can be approximated, then an efficient comprehender should maintain "expectation" over past as well as upcoming material (Levy 2008b).

Levy (2008b) uses a string edit distance model of noisy input like production errors: e.g., what strings are probable errors if the intention is "a cat sat"?

Keeping track of the probability of what might have been intended accounts for comprehension patterns in "locally coherent" sentences (Tabor, Gantaliucci & Richardson 2004): Keeping track of the probability of what might have been intended accounts for comprehension patterns in "locally coherent" sentences (Tabor, Gantaliucci & Richardson 2004): Keeping track of the probability of what might have been intended accounts for comprehension patterns in "locally coherent" sentences (Tabor, Gantaliucci & Richardson 2004):

3. (a) The coach smiled at the player... tossed a frisbee
(b) The coach smiled at the player... tossed a frisbee
(c) The coach smiled at the player... tossed a frisbee

If we replace the string-edit measure with a model of number production errors, the comprehension model represents a rational solution to dealing with these errors.

4. A computational model of production errors

Defines a probability that the speaker will produce a particular number error given the sentence they intended, with two sources of number error:

(a) each noun phrase may "flip" its plural feature with probability:

(b) a plural feature at N may "move" to a singular noun with probability proportional to the tree distance between them:

Errors at each noun are independent, and summing over all ways to derive a tree i from a tree j gives the distribution:

We regressed reading times on the comprehension model’s predictions for each language separately, using language-specific error models (φ, β).

English data is better predicted using ϕ, estimated from English production error rates (log likelihood=−301.3) than from French rates (−330.3). French data is better predicted using error rates from French (−1623.9) than English (−1663.7).

5. Experimental results

We replicate Pearlmutter et al.’s (1999) results in English, and in translation in French.

Table: Regression Analysis of Reading Time (ms)

6. Testing the comprehension model

A computational model which represents an optimal allocation of processing resources under noisy input predicts behavioral results in two domains:

- syntactically well-formed local coherences as reported by Tabor et al. (2004)
- syntactically ill-formed agreement errors as reported by Pearlmutter et al. (1999)

Our comprehension model incorporates knowledge about the probability of different kinds of production error. Language-specific estimates of these probabilities result in a better fit to comprehension data.

Conclusions

- syntactically well-formed local coherences as reported by Tabor et al. (2004)
- syntactically ill-formed agreement errors as reported by Pearlmutter et al. (1999)

Our comprehension model incorporates knowledge about the probability of different kinds of production error. Language-specific estimates of these probabilities result in a better fit to comprehension data.