Proof of optimality of uniform distribution of information content

We define the problem as follows: given an utterance u to be expressed in n units, suppose that the difficulty incurred by each unit w_i is proportional to some power k of its negative conditional log-probability:

$$\text{diff}(w_i) \propto [- \log P(w_i|w_1 \ldots w_{i-1})]^k$$

and that the total difficulty of u is the sum of the difficulties of all its units.

Theorem. For any given joint probability p_u for u, setting the conditional probability of each w_i equal at $p_u^{1/n}$ minimizes the total difficulty of u when $k > 1$, and maximizes it when $k < 1$.

Proof. The proof follows from a simple application of Jensen’s inequality, which states that for any random variable X and any convex function f,

$$E[f(X)] \geq f(E[X])$$

and the reverse inequality for any concave function f. Define $p_i \equiv P(w_i|w_1 \ldots w_{i-1})$ (note that by definition, the p_i are constrained such that $\prod_{i=1}^n p_i = p_u$). Let X be the random variable

$$P(X = - \log p_i) = \frac{1}{n}$$

and f be the function $f(x) = x^k$. We have

$$E[X] = \sum_{i=1}^n \frac{1}{n} [- \log p_i]$$

$$= - \frac{1}{n} \log \prod_{i=1}^n p_i$$

$$= - \frac{1}{n} \log p_u$$

$$= - \log p_u^{1/n}$$

When $k > 1$, f is convex, so by Jensen’s inequality we have

$$\sum_{i=1}^n \frac{1}{n} [- \log p_i]^k \geq \left(- \log p_u^{1/n}\right)^k$$

and multiplying through by n gives us the desired result. When $k < 1$, f is concave, and the desired result follows by identical logic.

\square