Regression modeling

- Thus far, we have been concerned primarily with learning and inferences about *unconditional distributions*
Thus far, we have been concerned primarily with learning and inferences about \textit{unconditional distributions}.

- \(P(X) \) where \(X \) is formant frequency, or whether a binomial satisfies a given ordering constraint.
Regression modeling

Thus far, we have been concerned primarily with learning and inferences about *unconditional distributions*

- $P(X)$ where X is formant frequency, or whether a binomial satisfies a given ordering constraint
- $P(X, Y)$ where X and Y are whether each of two conjuncts in an NP coordination contains a PP
Regression modeling

Thus far, we have been concerned primarily with learning and inferences about \textit{unconditional distributions}.

- $P(X)$ where X is formant frequency, or whether a binomial satisfies a given ordering constraint.
- $P(X, Y)$ where X and Y are whether each of two conjuncts in an NP coordination contains a PP.

We have used graphical models to place constraints on the form of a joint distribution $P(X_1, \ldots, X_n)$.
Regression modeling

- However, there are many cases where we want to learn and draw inferences about *conditional distributions* \(P(Y|X_1, \ldots, X_n) \)
Regression modeling

- However, there are many cases where we want to learn and draw inferences about *conditional distributions*

\[P(Y|X_1, \ldots, X_n) \]
Regression modeling

- However, there are many cases where we want to learn and draw inferences about conditional distributions

\[P(Y|X_1, \ldots, X_n) \]

(Note that there may or may not be connections among \(X_1, \ldots, X_n \))
Regression modeling

- However, there are many cases where we want to learn and draw inferences about *conditional distributions* $P(Y|X_1, \ldots, X_n)$

 \[
 P(Y|X_1, \ldots, X_n)
 \]

- (Note that there may or may not be connections among X_1, \ldots, X_n)
- Questions one might ask:
Regression modeling

- However, there are many cases where we want to learn and draw inferences about conditional distributions

\[P(Y|X_1, \ldots, X_n) \]

- (Note that there may or may not be connections among \(X_1, \ldots, X_n\))
- Questions one might ask:
 - Is there evidence that each \(X_i\) influences \(Y\) above and beyond the influence of the other \(X_i\)?
Regression modeling

- However, there are many cases where we want to learn and draw inferences about *conditional distributions*

\[P(Y|X_1, \ldots, X_n) \]

- (Note that there may or may not be connections among \(X_1, \ldots, X_n \))

- Questions one might ask:
 - Is there evidence that each \(X_i \) influences \(Y \) above and beyond the influence of the other \(X_i \)?
 - Do \(X_i \) and \(X_j \) have “independent” influences on \(Y \), or do they “interact” in their influence on \(Y \)?
Regression modeling

- However, there are many cases where we want to learn and draw inferences about *conditional distributions*

\[P(Y|X_1, \ldots, X_n) \]

- (Note that there may or may not be connections among \(X_1, \ldots, X_n\))
- Questions one might ask:
 - Is there evidence that each \(X_i\) influences \(Y\) above and beyond the influence of the other \(X_i\)?
 - Do \(X_i\) and \(X_j\) have “independent” influences on \(Y\), or do they “interact” in their influence on \(Y\)?
 - What is the *shape* of the relationship between the \(X\)’s and \(Y\)?
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children]_{Recip} [toys]_{Theme}
Sally gave [toys]_{Theme} to [the children]_{Recip}

Double Object
Prepositional Object

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children]_{Recip} [toys]_{Theme} \quad \text{Double Object}
Sally gave [toys]_{Theme} to [the children]_{Recip} \quad \text{Prepositional Object}

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- Probability of PO outcome can be modeled with Bernoulli distribution, success parameter π
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children]$_{\text{Recip}}$ [toys]$_{\text{Theme}}$ \hspace{2cm} \text{Double Object}
Sally gave [toys]$_{\text{Theme}}$ to [the children]$_{\text{Recip}}$ \hspace{2cm} \text{Prepositional Object}

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- \rightarrow Probability of PO outcome can be modeled with Bernoulli distribution, success parameter π
- There are many variables X_i that may influence speaker preference
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children]$_{\text{Recip}}$ [toys]$_{\text{Theme}}$
Sally gave [toys]$_{\text{Theme}}$ to [the children]$_{\text{Recip}}$

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- Probability of PO outcome can be modeled with Bernoulli distribution, success parameter π
- There are many variables X_i that may influence speaker preference
 - Definiteness of theme
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children][\text{Recip}] [toys][\text{Theme}]
Sally gave [toys][\text{Theme}] to [the children][\text{Recip}]

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- Probability of PO outcome can be modeled with Bernoulli distribution, success parameter π
- There are many variables X_i that may influence speaker preference
 - Definiteness of theme
 - Definiteness of recipient
Example: the dative alternation (Bresnan et al., 2007)

Sally gave \([\text{the children}]_{\text{Recip}} [\text{toys}]_{\text{Theme}}\)
Sally gave \([\text{toys}]_{\text{Theme}}\) to \([\text{the children}]_{\text{Recip}}\)

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- Probability of PO outcome can be modeled with Bernoulli distribution, success parameter \(\pi\)
- There are many variables \(X_i\) that may influence speaker preference
 - Definiteness of theme
 - Definiteness of recipient
 - Size of theme
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children] \text{Recip} [toys] \text{Theme} \quad \text{Double Object}
Sally gave [toys] \text{Theme} to [the children] \text{Recip} \quad \text{Prepositional Object}

Which construction is used to express this outcome is a (more or less!) dichotomous outcome

→ Probability of PO outcome can be modeled with Bernoulli distribution, success parameter \(\pi \)

There are many variables \(X_i \) that may influence speaker preference

- Definiteness of theme
- Definiteness of recipient
- Size of theme
- Size of recipient
Example: the dative alternation (Bresnan et al., 2007)

Sally gave \([\text{the children}]_{\text{Recip}} [\text{toys}]_{\text{Theme}}\)
Sally gave \([\text{toys}]_{\text{Theme}} \text{to} [\text{the children}]_{\text{Recip}}\)

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- Probability of PO outcome can be modeled with Bernoulli distribution, success parameter \(\pi\)
- There are many variables \(X_i\) that may influence speaker preference
 - Definiteness of theme
 - Definiteness of recipient
 - Size of theme
 - Size of recipient
 - ...
Example: the dative alternation (Bresnan et al., 2007)

Sally gave [the children]_{Recip} [toys]_{Theme} \hspace{1cm} \textbf{Double Object}
Sally gave [toys]_{Theme} to [the children]_{Recip} \hspace{1cm} \textbf{Prepositional Object}

- Which construction is used to express this outcome is a (more or less!) dichotomous outcome
- \rightarrow Probability of PO outcome can be modeled with Bernoulli distribution, success parameter π
- There are many variables X_i that may influence speaker preference
 - Definiteness of theme
 - Definiteness of recipient
 - Size of theme
 - Size of recipient
 - \ldots
- Each unique combination of these $\{X_i\}$ may potentially have its own unique value of π
Learning conditional distributions

Example: definiteness of recipient and definiteness of theme

Contingency table from Bresnan et al. (2007):

<table>
<thead>
<tr>
<th>Realization</th>
<th>Rec=def, Theme=def</th>
<th>Rec=def, Theme=indef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double obj.</td>
<td>456</td>
<td>1754</td>
</tr>
<tr>
<td>Prep. obj.</td>
<td>317</td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Realization</th>
<th>Rec=indef, Theme=def</th>
<th>Rec=indef, Theme=indef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double obj.</td>
<td>34</td>
<td>170</td>
</tr>
<tr>
<td>Prep. obj.</td>
<td>122</td>
<td>162</td>
</tr>
</tbody>
</table>
Learning conditional distributions

Example: definiteness of recipient and definiteness of theme

Contingency table from Bresnan et al. (2007):

<table>
<thead>
<tr>
<th>Realization</th>
<th>Rec=def, Theme=def</th>
<th>Rec=def, Theme=indef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double obj.</td>
<td>456</td>
<td>1754</td>
</tr>
<tr>
<td>Prep. obj.</td>
<td>317</td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Realization</th>
<th>Rec=indef, Theme=def</th>
<th>Rec=indef, Theme=indef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double obj.</td>
<td>34</td>
<td>170</td>
</tr>
<tr>
<td>Prep. obj.</td>
<td>122</td>
<td>162</td>
</tr>
</tbody>
</table>

We could use relative frequency estimation to learn the distributions $P(\text{Realization}|\text{RecDef})$, $P(\text{Realization}|\text{ThemeDef})$, and $P(\text{Realization}|\text{RecDef}, \text{ThemeDef})$
Learning conditional distributions

The *unconditional* distribution $P(\text{Realization})$ has one parameter:
Learning conditional distributions

\[P(\text{Realization} | \text{RecDef}) \] has two parameters:

- Definiteness of recipient
- Probability of double object realization

![Graph showing the probability of double object realization for definities (def) and indefinitities (indef).]
Learning conditional distributions

$P(\text{Realization} | \text{ThemeDef})$ has two parameters:

- **def**
 - Definiteness of theme
 - Probability of double object realization
 - Values: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

- **indef**
 - Definiteness of theme
 - Probability of double object realization
 - Values: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
Learning conditional distributions

\[P(\text{Realization}|\text{RecDef}, \text{ThemeDef}) \] has four parameters:

- Definiteness of recipient and theme
- Probability of double object realization

![Diagram showing the probability distribution for different combinations of definiteness of recipient and theme.](image-url)
Learning conditional distributions

- We needed one parameter for the overall mean
Learning conditional distributions

- We needed one parameter for the overall mean
- Recipient definiteness always increases double-object probability in a consistent fashion (+1 parameter)
Learning conditional distributions

- We needed one parameter for the overall mean
- Recipient definiteness always *increases* double-object probability in a consistent fashion (+1 parameter)
- Likewise, theme definiteness always *decreases* double-object probability in a consistent fashion (+1 parameter)
Learning conditional distributions

- We needed one parameter for the overall mean
- Recipient definiteness always *increases* double-object probability in a consistent fashion (+1 parameter)
- Likewise, theme definiteness always *decreases* double-object probability in a consistent fashion (+1 parameter)
- It would be nice to be able to learn a 3-parameter model that encodes these two effects
Learning conditional distributions

- We needed one parameter for the overall mean.
- Recipient definiteness always increases double-object probability in a consistent fashion (+1 parameter).
- Likewise, theme definiteness always decreases double-object probability in a consistent fashion (+1 parameter).
- It would be nice to be able to learn a 3-parameter model that encodes these two effects.
- But relative frequency estimation doesn’t give us the tools to do this!
Learning conditional distributions

- We needed one parameter for the overall mean
- Recipient definiteness always *increases* double-object probability in a consistent fashion (+1 parameter)
- Likewise, theme definiteness always *decreases* double-object probability in a consistent fashion (+1 parameter)
- It would be nice to be able to learn a 3-parameter model that encodes these two effects
- But relative frequency estimation doesn’t give us the tools to do this!
 - RFE only gives us the tools for a separate multinomial per combination of X_i

\[
P(\text{Realization}=\text{DO}|\text{Rec}=\text{def}, \text{Theme}=\text{def}) = \pi_1
\]
\[
P(\text{Realization}=\text{DO}|\text{Rec}=\text{def}, \text{Theme}=\text{indef}) = \pi_2
\]
\[
P(\text{Realization}=\text{DO}|\text{Rec}=\text{indef}, \text{Theme}=\text{def}) = \pi_3
\]
\[
P(\text{Realization}=\text{DO}|\text{Rec}=\text{indef}, \text{Theme}=\text{indef}) = \pi_4
\]
Learning distributions conditional on continuous RVs

- Another example: the relationship between word frequency X and lexical decision time Y
Learning distributions conditional on continuous RVs

- Another example: the relationship between word frequency X and lexical decision time Y

- There is no hope of using any method to learn an arbitrary, different distribution of $P(Y|X)$ for each different value of X
Learning distributions conditional on continuous RVs

- Another example: the relationship between word frequency X and lexical decision time Y

There is no hope of using any method to learn an arbitrary, different distribution of $P(Y|X)$ for each different value of X

Furthermore, there is a clear, *systematic* relationship between X and Y—we want to exploit it!
Generalized linear models I

Goal: model the effects of predictors (\textit{independent variables}) X on a response (\textit{dependent variable}) Y.
Generalized linear models I

Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

The picture:
Generalized linear models I

Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

The picture:
Generalized linear models I

Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

The picture:
Assumptions of the generalized linear model (GLM):

1. Predictors \(\{X_i\} \) influence \(Y \) through the mediation of a linear predictor \(\eta \);
Assumptions of the generalized linear model (GLM):

1. Predictors \(\{X_i\} \) influence \(Y \) through the mediation of a linear predictor \(\eta \);
2. \(\eta \) is a linear combination of the \(\{X_i\} \):
Assumptions of the generalized linear model (GLM):

1. Predictors \(\{X_i\} \) influence \(Y \) through the mediation of a linear predictor \(\eta \);

2. \(\eta \) is a linear combination of the \(\{X_i\} \):

\[
\eta = \alpha + \beta_1 X_1 + \cdots + \beta_N X_N \quad \text{(linear predictor)}
\]
Assumptions of the generalized linear model (GLM):

1. Predictors \(\{X_i\} \) influence \(Y \) through the mediation of a linear predictor \(\eta \);
2. \(\eta \) is a linear combination of the \(\{X_i\} \):
 \[
 \eta = \alpha + \beta_1 X_1 + \cdots + \beta_N X_N \quad \text{(linear predictor)}
 \]
3. \(\eta \) determines the predicted mean \(\mu \) of \(Y \)
 \[
 \eta = l(\mu) \quad \text{(link function)}
 \]
Assumptions of the generalized linear model (GLM):

1. Predictors \(\{X_i\} \) influence \(Y \) through the mediation of a linear predictor \(\eta \);
2. \(\eta \) is a linear combination of the \(\{X_i\} \):
 \[
 \eta = \alpha + \beta_1 X_1 + \cdots + \beta_N X_N \quad \text{(linear predictor)}
 \]
3. \(\eta \) determines the predicted mean \(\mu \) of \(Y \)
 \[
 \eta = l(\mu) \quad \text{(link function)}
 \]
4. There is some noise distribution of \(Y \) around the predicted mean \(\mu \) of \(Y \):
 \[
P(Y = y; \mu)
 \]
GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.
Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

\[\eta = I(\mu) = \mu \]
GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

 \[\eta = l(\mu) = \mu \]

- Noise is normally (=Gaussian) distributed around 0 with standard deviation \(\sigma \):

 \[\epsilon \sim \mathcal{N}(0, \sigma) \]
GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:
 \[\eta = \mu \]

- Noise is normally (Gaussian) distributed around 0 with standard deviation \(\sigma \):
 \[\epsilon \sim \mathcal{N}(0, \sigma) \]

- This gives us the traditional linear regression equation:
 \[Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_n X_n + \epsilon \]
How do we fit the parameters β_i and σ (choose *model coefficients*)?

There are two major approaches (deeply related, yet different) in widespread use:
How do we fit the parameters β_i and σ (choose model coefficients)?

There are two major approaches (deeply related, yet different) in widespread use:

- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

 \[
 \text{choose } \{\beta_i\} \text{ and } \sigma \text{ that make the likelihood } P(Y|\{\beta_i\}, \sigma) \text{ as large as possible}
 \]
How do we fit the parameters β_i and σ (choose model coefficients)?

There are two major approaches (deeply related, yet different) in widespread use:

- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

 \[\text{choose } \{\beta_i\} \text{ and } \sigma \text{ that make the likelihood } P(Y|\{\beta_i\},\sigma) \text{ as large as possible} \]

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data
How do we fit the parameters β_i and σ (choose model coefficients)?

There are two major approaches (deeply related, yet different) in widespread use:

- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

 \[
 \text{choose } \{\beta_i\} \text{ and } \sigma \text{ that make the likelihood } P(Y|\{\beta_i\}, \sigma) \text{ as large as possible}
 \]

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

 \[
 P(\{\beta_i\}, \sigma|Y) = \frac{P(Y|\{\beta_i\}, \sigma)P(\{\beta_i\}, \sigma)}{P(Y)}
 \]
How do we fit the parameters β_i and σ (choose model coefficients)?

There are two major approaches (deeply related, yet different) in widespread use:

- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

 $\text{choose } \{\beta_i\} \text{ and } \sigma \text{ that make the likelihood } P(Y|\{\beta_i\}, \sigma) \text{ as large as possible}$

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

$$P(\{\beta_i\}, \sigma|Y) = \frac{\text{Likelihood} \cdot \text{Prior}}{P(Y)}$$
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
 tpozt Word or non-word?
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

 tpozt \textit{Word or non-word?}
 houze \textit{Word or non-word?}
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

 tpozt \textit{Word or non-word?}
 houze \textit{Word or non-word?}

- Non-words with different \textit{neighborhood densities}* should have different average RT *(= number of neighbors of edit-distance 1)*
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
 - tpozt \textit{Word or non-word?}
 - houze \textit{Word or non-word?}

- Non-words with different \textit{neighborhood densities}\(^*\) should have different average RT \(^*\)(= number of neighbors of edit-distance 1)

- A simple model: assume that neighborhood density has a \textit{linear} effect on average RT, and trial-level noise is \textit{normally distributed}\(^*\) \(^*\)(n.b. wrong–RTs are skewed—but not horrible.)
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

 tpozt \textit{Word or non-word?}

 houze \textit{Word or non-word?}

- Non-words with different \textit{neighborhood densities} should have different average RT \((=\text{number of neighbors of edit-distance 1})\)

- A simple model: assume that neighborhood density has a \textit{linear} effect on average RT, and trial-level noise is \textit{normally distributed} \((\text{n.b. wrong–RTs are skewed—but not horrible.})\)

- If \(x_i\) is neighborhood density, our simple model is

\[
RT_i = \alpha + \beta x_i + \epsilon_i \\
\sim N(0,\sigma)
\]
GLMs V: a simple example

▶ You are studying non-word RTs in a lexical-decision task

\[
\text{tpozt} \quad \text{Word or non-word?} \\
\text{houze} \quad \text{Word or non-word?}
\]

▶ Non-words with different neighborhood densities* should have different average RT *(= number of neighbors of edit-distance 1)*

▶ A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong–RTs are skewed—but not horrible.)*

▶ If \(x_i \) is neighborhood density, our simple model is

\[
RT_i = \alpha + \beta x_i + \epsilon_i \sim N(0,\sigma)
\]

▶ We need to draw inferences about \(\alpha, \beta, \) and \(\sigma \)
GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

 tpozt Word or non-word?
 houze Word or non-word?

- Non-words with different neighborhood densities* should have different average RT *(= number of neighbors of edit-distance 1)

- A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong–RTs are skewed—but not horrible.)

- If x_i is neighborhood density, our simple model is

 $$ RT_i = \alpha + \beta x_i + \mathcal{N}(0,\sigma) $$

- We need to draw inferences about α, β, and σ

- e.g., “Does neighborhood density affects RT?” → is β reliably non-zero?
We’ll use length-4 nonword data from (Bicknell et al., 2010) (thanks!), such as:

Few neighbors
gaty peme rixy

Many neighbors
lish pait yine
We’ll use length-4 nonword data from (Bicknell et al., 2010) (thanks!), such as:

- Few neighbors: gaty, peme, rixy
- Many neighbors: lish, pait, yine

There’s a wide range of neighborhood density:
GLMs VII: maximum-likelihood model fitting

\[RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:

 \[RT \sim 1 + x \]
Here’s a translation of our simple model into R:

\[RT \sim 1 + x \]

The noise is implicit in asking R to fit a \textit{linear} model.
Here’s a translation of our simple model into R:

\[RT \sim 1 + x \]

The noise is implicit in asking R to fit a *linear* model.

(We can omit the 1; R assumes it unless otherwise directed.)
GLMs VII: maximum-likelihood model fitting

\[RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:
 \[RT \sim x \]
- The noise is implicit in asking R to fit a linear model
- (We can omit the 1; R assumes it unless otherwise directed)
GLMs VII: maximum-likelihood model fitting

\[RT_i = \alpha + \beta X_i + \varepsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:
 \[RT \sim x \]
- The noise is implicit in asking R to fit a linear model
- (We can omit the 1; R assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2010)

```r
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m)

Gaussian noise, implicit intercept

[...]

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 382.997   26.837  14.271  <2e-16  ***
neighbors   4.828    6.553   0.737   0.466

> sqrt(summary(m)[["dispersion"]])

[1] 107.2248
```
GLMs VII: maximum-likelihood model fitting

\[RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:
 \[RT \sim x \]
- The noise is implicit in asking R to fit a \textit{linear} model
- (We can omit the 1; R assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2010)

```r
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m)

[...
  Estimate  Std. Error    t value  Pr(>|t|)
(Intercept) 382.997      26.837     14.271 <2e-16 ***
neighbors    4.828       6.553      0.737   0.466

> sqrt(summary(m)[["dispersion"]])
[1] 107.2248
```
GLMs VII: maximum-likelihood model fitting

\[RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0,\sigma) \]

- Here’s a translation of our simple model into R:
 \[RT \sim x \]
- The noise is implicit in asking R to fit a *linear* model
- (We can omit the 1; R assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2010)

```r
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m)
[...]

\( \hat{\alpha} \)

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 382.997   | 26.837  | 14.271   | <2e-16 *** |
| neighbors   | 4.828     | 6.553   | 0.737    | 0.466     |

> sqrt(summary(m)[["dispersion"]])
[1] 107.2248
GLMs VII: maximum-likelihood model fitting

\[ RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:
  \[ RT \sim x \]
- The noise is implicit in asking R to fit a *linear* model
- (We can omit the 1; R assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2010)

```r
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m)

[...

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 382.997 | 26.837 | 14.271 | <2e-16 ***|
| neighbors | 4.828 | 6.553 | 0.737 | 0.466 |

> sqrt(summary(m)[["dispersion"]])

[1] 107.2248
```

\( \hat{\alpha} \) and \( \hat{\beta} \)
GLMs VII: maximum-likelihood model fitting

\[ RT_i = \alpha + \beta X_i + \epsilon_i \sim N(0, \sigma) \]

- Here’s a translation of our simple model into R:
  \[ RT \sim x \]
- The noise is implicit in asking R to fit a \textit{linear} model
- (We can omit the 1; R assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2010)

```r
m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m)

Call:
glm(formula = RT ~ neighbors, family = "gaussian", data = d)

Deviance Residuals:
 Min 1Q Median 3Q Max
-14.4536 -3.4309 -0.1599 3.3893 17.4353

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 382.997 26.837 14.271 < 2e-16 ***
neighbors 4.828 6.553 0.737 0.466

Dispersion parameter for gaussian family set to 107.2248

Null deviance: 1424.6 on 317 degrees of freedom
Residual deviance: 1382.0 on 316 degrees of freedom
corrected deviance: 1382.0 on 316 degrees of freedom
AIC: 1390.0

> sqrt(summary(m)[["dispersion"]])
[1] 107.2248
```

\( \hat{\alpha}, \hat{\beta}, \hat{\sigma} \)
GLMs: maximum-likelihood fitting VIII

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>383.00</td>
</tr>
<tr>
<td>neighbors</td>
<td>4.83</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>107.22</td>
</tr>
</tbody>
</table>
GLMs: maximum-likelihood fitting VIII

<table>
<thead>
<tr>
<th>Intercept</th>
<th>383.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbors</td>
<td>4.83</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>107.22</td>
</tr>
</tbody>
</table>

- Estimated coefficients are what underlies “best linear fit” plots
GLMs: maximum-likelihood fitting VIII

- Estimated coefficients are what underlies “best linear fit” plots

<table>
<thead>
<tr>
<th>Intercept</th>
<th>383.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbors</td>
<td>4.83</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>107.22</td>
</tr>
</tbody>
</table>
GLMs IX: Bayesian model fitting

$P(\{\beta_i\}, \sigma | Y) = \frac{\text{Likelihood} \cdot \text{Prior}}{P(Y)}$

- Alternative to maximum-likelihood:
  Bayesian model fitting
GLMs IX: Bayesian model fitting

Alternative to maximum-likelihood: Bayesian model fitting

Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable
GLMs IX: Bayesian model fitting

\[
P(\{\beta_i\}, \sigma | Y) = \underbrace{P(Y | \{\beta_i\}, \sigma)}_{\text{Likelihood}} \cdot \underbrace{P(\{\beta_i\}, \sigma)}_{\text{Prior}}
\]

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable
- Multiply by likelihood \(\rightarrow\) posterior probability distribution over \((\alpha, \beta, \sigma)\)
GLMs IX: Bayesian model fitting

\[ P(\{\beta_i\}, \sigma | Y) = \frac{P(Y | \{\beta_i\}, \sigma) P(\{\beta_i\}, \sigma)}{P(Y)} \]

- Alternative to maximum-likelihood: Bayesian model fitting

- Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable

- Multiply by likelihood \(\rightarrow\) posterior probability distribution over \((\alpha, \beta, \sigma)\)
GLMs IX: Bayesian model fitting

\[
P(\{\beta_i\}, \sigma | Y) = \frac{\text{Likelihood}}{\text{Prior}} = \frac{P(Y|\{\beta_i\}, \sigma) P(\{\beta_i\}, \sigma)}{P(Y)}
\]

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable
- Multiply by likelihood → posterior probability distribution over \((\alpha, \beta, \sigma)\)
- Bound the region of highest posterior probability containing 95% of probability density → HPD confidence region
GLMs IX: Bayesian model fitting

\[ P(\{\beta_i\}, \sigma | Y) = \frac{\text{Likelihood} \cdot \text{Prior}}{P(Y)} \]

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable
- Multiply by likelihood \(\rightarrow\) posterior probability distribution over \((\alpha, \beta, \sigma)\)
- Bound the region of highest posterior probability containing 95% of probability density \(\rightarrow\) HPD confidence region

![Bayesian model fitting diagram](image)
GLMs IX: Bayesian model fitting

\[ P(\{\beta_i\}, \sigma | Y) = \frac{P(Y | \{\beta_i\}, \sigma) P(\{\beta_i\}, \sigma)}{P(Y)} \]

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of \((\alpha, \beta, \sigma)\) equally probable
- Multiply by likelihood \(\rightarrow\) posterior probability distribution over \((\alpha, \beta, \sigma)\)
- Bound the region of highest posterior probability containing 95% of probability density \(\rightarrow\) HPD confidence region

\[ p_{MCMC} = 0.46 \]
