1. Consider the following context-free grammar:

\[
\begin{align*}
\text{ROOT} & \rightarrow \text{yeah S} && \text{Det} \rightarrow \text{the} \\
\text{S} & \rightarrow \text{NP VP} && \text{N} \rightarrow \text{girl} \\
\text{NP} & \rightarrow \text{Det N} && \text{N} \rightarrow \text{glasses} \\
\text{NP} & \rightarrow \text{Det Adj N} && \text{Adj} \rightarrow \text{tall} \\
\text{NP} & \rightarrow \text{N} && \text{V} \rightarrow \text{put} \\
\text{NP} & \rightarrow \text{NP PP} && \text{Part} \rightarrow \text{out} \\
\text{VP} & \rightarrow \text{V Part NP} && \text{N} \rightarrow \text{cat} \\
\text{VP} & \rightarrow \text{V} && \text{P} \rightarrow \text{with} \\
\text{PP} & \rightarrow \text{P NP} & \\
\end{align*}
\]

and the following sentence:

(1) yeah the tall girl with glasses put out the cat

2. Chomsky Normal Form: This is a grammar in which each rule takes one of the three following forms:

- \(\text{ROOT} \rightarrow \epsilon \) where \(\text{ROOT} \) is the start symbol;
- \(X \rightarrow Y Z \) where \(Y \) and \(Z \) are non-terminals; or
- \(X \rightarrow t \) where \(t \) is a terminal.

This form facilitates parsing.

3. Converting to Chomsky Normal Form: There are several strategies we can use for conversion:

(a) To break up rules that have more than two right-hand symbols, we can introduce “intermediate” non-terminals to break the rules up into simpler components. e.g., convert

\[X \rightarrow Y_1 Y_2 \ldots Y_n \]
into

\[X \rightarrow Y_1 X' \]
\[X' \rightarrow Y_2 \ldots Y_n \]

where \(X' \) is a new nonterminal symbol that doesn’t already appear elsewhere in the grammar.

(b) To break up rules that mix non-terminals and terminals on the right-hand side, we can likewise introduce “intermediate” non-terminals. e.g., convert

\[X \rightarrow Y_1 \ldots Y_{i-1} t Y_{i+1} \ldots Y_n \]

where \(t \) is a terminal into

\[X \rightarrow Y_1 \ldots Y_{i-1} X' Y_{i+1} \ldots Y_n \]
\[X' \rightarrow t \]

(c) To deal with rules that have only a single non-terminal on the right-hand side (UNIT PRODUCTIONS), we use the concept of UNARY CLOSURE. If a sequence of unit productions takes category \(X \) to category \(Y \), then for every rule \(Y \rightarrow \alpha \) in the grammar, add a rule \(X \rightarrow \alpha \). Once that’s all done, remove all the unary productions.

4. The Cocke-Kasami-Younger (CKY, or CYK) Parsing Algorithm is a bottom-up parser with dynamic programming. For a CFG in Chomsky Normal Form, here is the CKY algorithm:

Algorithm 1 CKY Parsing

1: function CKY-PARSE(\(\text{words,grammar} \))
2: Initialize table to the upper half of an \(n \times n \) matrix
3: for \(k \) in 1 to len(\(\text{words} \)) do
4: \hspace{1em} for \(i \) in \(k-1 \) to 0, incrementing in step size \(-1\) do
5: \hspace{2em} if \(i == k-1 \) then
6: \hspace{3em} for rule \(X \rightarrow t \) such that \(\text{words}[k]==t \) do
7: \hspace{4em} Put \(X \) in \(\text{table}[i,k] \)
8: \hspace{2em} else
9: \hspace{3em} for \(j \) in \(i+1 \) to \(j-1 \) do
10: \hspace{4em} for rule \(X \rightarrow Y \ Z \) such that \(Y \in \text{table}[i,j] \) and \(Z \in \text{table}[j,k] \) do
11: \hspace{5em} Put \(X \) in \(\text{table}[i,k] \)
12: return table

5. Now let’s work out CKY parsing of sentence [1]. We’ll need to (i) convert the grammar to Chomsky Normal Form, and then (ii) run the algorithm.