ambiguities: faster (adj+comp vs. verb+agentive) unforgettable untieable
- morphological parsing - orthographic spelling rules
- composition of finite-state transducers - minimization of finite-state transducers

1. Examples of English morphology.

2. Definition: a finite-state transducer consists of:
 - A finite set of \(N \) states \(Q = \{q_0, q_1, \ldots, q_{N-1}\} \), with \(q_0 \) the start state
 - A finite input alphabet \(\Sigma \) of symbols
 - A finite output alphabet \(\Delta \) of symbols
 - A set of final states \(F \subseteq Q \)
 - A transition relation between states. The transition relation \(\delta(q, i, o) \) takes three arguments—a state \(q \in Q \), an input symbol \(i \in \{\Sigma \cup \epsilon\} \), and an output symbol \(o \in \{\Delta \cup \epsilon\} \)—and returns a set of possible new states \(Q' \subseteq Q \).

3. Things you can use a finite-state transducer for:
 - String pair recognition: accept or reject a string pair
 - Finding the outputs corresponding to an input (or vice versa): give the transducer the input, it will give you the outputs

4. Morphological parsing with an FST.

5. Important operation: FSTs are closed under composition.
 - If FST \(A \) has input alphabet \(\Sigma \) and output alphabet \(\Gamma \), and FST \(B \) has input alphabet \(\Gamma \) and alphabet \(\Delta \), then the composition \(A \circ B \) is also an FST. If \(A \) accepts string pair \(\alpha: \gamma \) and \(B \) accepts string pair \(\gamma: \beta \), then \(A \circ B \) accepts \(\alpha: \beta \).

6. Orthographic spelling rules with an FST: we will assume that every word ends in the special end character \#.
7. Combining morphological parsing and orthographic rules as FST composition.