A Brief Introduction to Directed Graphical Models
Probabilistic Models in the Study of Language
Day 3

Roger Levy

UC San Diego
Department of Linguistics

August 8, 2012
Bayesian parameter estimation

The scenario: you are a native English speaker in whose experience passivizable constructions are passivized with frequency q.

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

You encounter a new dialect of English and hear data y consisting of n passivizable utterances, m of which were passivized:

$$X \sim \text{Bern}(\pi)$$

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- **Or** place a probability distribution on the number of passives in the next N passivizable utterances.
Anatomy of Bayesian inference

Simplest possible scenario:

$I \rightarrow \theta \rightarrow Y$
Anatomy of Bayesian inference

Simplest possible scenario:

The corresponding Bayesian inference:

\[P(\theta | y, I) = \frac{P(y | \theta, I)P(\theta | I)}{P(y | I)} \]
Anatomy of Bayesian inference

Simplest possible scenario:

\[\begin{array}{c}
I \rightarrow \theta \rightarrow Y
\end{array} \]

The corresponding Bayesian inference:

\[
P(\theta|y, I) = \frac{P(y|\theta, I)P(\theta|I)}{P(y|I)}
\]

\[
\text{Likelihood for } \theta \quad \text{Prior over } \theta
\]

\[
= \frac{P(y|\theta)}{P(y|I)}
\]

\[
\text{Likelihood marginalized over } \theta
\]

(because \(y \perp I | \theta \))
Anatomy of Bayesian inference

Simplest possible scenario:

The corresponding Bayesian inference:

\[
P(\theta | y, I) = \frac{P(y | \theta, I)P(\theta | I)}{P(y | I)}
\]

Likelihood for \(\theta \)
Prior over \(\theta \)

\[
= \frac{\underbrace{P(y | \theta)}}{P(y | I)} \frac{\underbrace{P(\theta | I)}}{P(y | I)} \quad \text{(because } y \perp I | \theta)\]

Likelihood marginalized over \(\theta \)

- At the “bottom” of the graph, our model is the binomial distribution:

\[
P(y | \theta) \sim Binom(n, \theta)
\]

- But to get things going we have to set the prior \(P(\theta | I) \).
Priors for the binomial distribution

- For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$
 - Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit
Priors for the binomial distribution

For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$

- Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit

- Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution
For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$

Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit.

Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution.

In general, the sky is the limit as to what you choose for $P(\theta)$.
Priors for the binomial distribution

- For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$
 - Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit

- Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution

- In general, the sky is the limit as to what you choose for $P(\theta)$

- But in many cases there are useful priors that will make your life easier
The beta distribution

The beta distribution has two parameters $\alpha_1, \alpha_2 > 0$ and is defined as:

$$P(\pi | \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1}(1 - \pi)^{\alpha_2-1}$$

$$(0 \leq \pi \leq 1, \alpha_1 > 0, \alpha_2 > 0)$$

where the beta function $B(\alpha_1, \alpha_2)$ serves as a normalizing constant:

$$B(\alpha_1, \alpha_2) = \int_0^1 \pi^{\alpha_1-1}(1 - \pi)^{\alpha_2-1} d\pi$$
Some beta distributions

If $X \sim B(\alpha_1, \alpha_2)$:

- $E[X] = \frac{\alpha_1}{\alpha_1 + \alpha_2}$
- If $\alpha_1, \alpha_2 > 1$, then X has a mode at $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence

\[I = \langle \alpha_1, \alpha_2 \rangle. \]

\[
P(\pi | y, \alpha_1, \alpha_2) = \frac{P(y | \pi)P(\pi | \alpha_1, \alpha_2)}{P(y | \alpha_1, \alpha_2)}
\]

(1)
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.

$$P(\pi|y, \alpha_1, \alpha_2) = \frac{P(y|\pi)P(\pi|\alpha_1, \alpha_2)}{P(y|\alpha_1, \alpha_2)} \quad (1)$$

Since the denominator is not a function of π, it is a normalizing constant. Ignore it and work in terms of proportionality:

$$P(\pi|y, \alpha_1, \alpha_2) \propto P(y|\pi)P(\pi|\alpha_1, \alpha_2)$$
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.

$$P(\pi|y, \alpha_1, \alpha_2) = \frac{P(y|\pi)P(\pi|\alpha_1, \alpha_2)}{P(y|\alpha_1, \alpha_2)}$$ \hspace{1cm} (1)

Since the denominator is not a function of π, it is a normalizing constant. Ignore it and work in terms of proportionality:

$$P(\pi|y, \alpha_1, \alpha_2) \propto P(y|\pi)P(\pi|\alpha_1, \alpha_2)$$

Likelihood for the binomial distribution is

$$P(y|\pi) = \binom{n}{m} \pi^m (1 - \pi)^{n-m}$$
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.

$$P(\pi | y, \alpha_1, \alpha_2) = \frac{P(y | \pi) P(\pi | \alpha_1, \alpha_2)}{P(y | \alpha_1, \alpha_2)}$$ \hspace{1cm} (1)

Since the denominator is not a function of π, it is a normalizing constant. Ignore it and work in terms of proportionality:

$$P(\pi | y, \alpha_1, \alpha_2) \propto P(y | \pi) P(\pi | \alpha_1, \alpha_2)$$

Likelihood for the binomial distribution is

$$P(y | \pi) = \binom{n}{m} \pi^m (1 - \pi)^{n-m}$$

Beta prior is

$$P(\pi | \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}$$
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi | y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n-m} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
\mathcal{P}(\pi|y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n-m} \pi^{\alpha_1 - 1} (1 - \pi)^{\alpha_2 - 1}
\]

\[
\propto \pi^{m + \alpha_1 - 1} (1 - \pi)^{n - m + \alpha_2 - 1}
\]
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi|y, \alpha_1, \alpha_2) \propto \pi^m(1-\pi)^{n-m} \pi^{\alpha_1-1}(1-\pi)^{\alpha_2-1} \\
\propto \pi^{m+\alpha_1-1}(1-\pi)^{n-m+\alpha_2-1}
\]

Crucial trick: this is itself a beta distribution! Recall that if \(\theta \sim \text{Beta}(\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1}(1-\pi)^{\alpha_2-1}
\]
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi|y, \alpha_1, \alpha_2) \propto \pi^m (1-\pi)^{n-m} \pi^{\alpha_1-1} (1-\pi)^{\alpha_2-1}
\]

\[
\propto \pi^{m+\alpha_1-1} (1-\pi)^{n-m+\alpha_2-1}
\]

Crucial trick: this is itself a beta distribution! Recall that if
\(\theta \sim \text{Beta}(\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1-\pi)^{\alpha_2-1}
\]

Hence \(P(\theta|y, \alpha_1, \alpha_2) \) is distributed as \(\text{Beta}(\alpha_1 + m, \alpha_2 + n - m) \).
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi | y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n-m} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1} \\
\propto \pi^{m+\alpha_1-1} (1 - \pi)^{n-m+\alpha_2-1}
\]

Crucial trick: this is itself a beta distribution! Recall that if \(\theta \sim Beta(\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]

Hence \(P(\theta | y, \alpha_1, \alpha_2) \) is distributed as \(Beta(\alpha_1 + m, \alpha_2 + n - m) \).

- With a beta prior and a binomial likelihood, the posterior is still beta-distributed. This is called conjugacy.
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivable utterances.
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

- To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability
Using our beta-binomial model

Goal:

▸ Estimate the success parameter π associated with passivization in the new English dialect;

▸ Or place a probability distribution on the number of passives in the next N passivizable utterances.

▸ To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

▸ $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (?)
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

- To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

 - $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (?)

- The mode of a beta distribution is $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

- $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (?)
- The mode of a beta distribution is $\frac{\alpha_1-1}{\alpha_1+\alpha_2-2}$
- Hence we might use $\alpha_1 = 3, \alpha_2 = 24$ (note that $\frac{2}{25} = 0.08$)
Using our beta-binomial model

Goal:

▷ Estimate the success parameter π associated with passivization in the new English dialect;

▷ **Or** place a probability distribution on the number of passives in the next N passivizable utterances.

▷ To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

▷ $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (?)

▷ The mode of a beta distribution is $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$

▷ Hence we might use $\alpha_1 = 3$, $\alpha_2 = 24$ (note that $\frac{2}{25} = 0.08$)

▷ Suppose that $n = 7$, $m = 2$: our posterior will be $\text{Beta}(5, 29)$, hence $\hat{\pi} = \frac{4}{32} = 0.125$
Beta-binomial posterior distributions
Fully Bayesian density estimation

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.
Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:
Fully Bayesian density estimation

Goal:
- Estimate the success parameter \(\pi \) associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next \(N \) passivizable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:

\[
P(y_{new} | y, I) = \int_{\theta} P(y_{new} | \theta) P(\theta | y, I) \, d\theta
\]
Fully Bayesian density estimation

Goal:

◮ Estimate the success parameter π associated with passivization in the new English dialect;

◮ Or place a probability distribution on the number of passives in the next N passivizable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:

$$P(y_{new} | y, I) = \int_{\theta} P(y_{new} | \theta) P(\theta | y, I) \, d\theta$$

This leads to the beta-binomial predictive model:

$$P(r | k, I, y) = \binom{k}{r} \frac{B(\alpha_1 + m + r, \alpha_2 + m - n + k - r)}{B(\alpha_1 + m, \alpha_2 + n - m)}$$
Fully Bayesian density estimation

\[P(k \text{ passives out of 50 trials} | \mathbf{y}, \mathbf{I}) \]

- Binomial
- Beta–Binomial
Fully Bayesian density estimation

- In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
Fully Bayesian density estimation

- In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
- This is because the new observations are only conditionally independent given θ—with uncertainty about θ, they are linked!
Fully Bayesian density estimation

- In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
- This is because the new observations are only conditionally independent given θ—with uncertainty about θ, they are linked!

\[y^{(1)}_{new} \quad y^{(2)}_{new} \quad \ldots \quad y^{(N)}_{new} \]