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Figure 2.3: The probability density function and cumulative distribution function of the
uniform distribution with parameters a and b

2.8 Expected values and variance

We now turn to two fundamental quantities of probability distributions: expected value
and variance.

2.8.1 Expected value

The expected value of a random variable X, which is denoted in many forms including
E(X), E[X], 〈X〉, and µ, is also known as the expectation or mean. For a discrete
random variable X under probability distribution P , it’s defined as

E(X) =
∑

i

xiP (xi) (2.13)

For a Bernoulli random variable Xπ with parameter π, for example, the possible outcomes
are 0 and 1, so we have

E(Xπ) = 0 × (1 − π) + 1 × π (2.14)

= π (2.15)

For a continuous random variable X under cpd p, the expectation is defined using integrals
instead of sums, as

E(X) =

∫ ∞

−∞
x p(x)dx (2.16)
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For example, a uniformly-distributed random variable X(a,b) with parameters a and b has
expectation

E(X(a,b)) =

∫ a

−∞
x p(x) dx +

∫ b

a

x p(x) dx +

∫ ∞

b

x p(x) dx (2.17)

= 0 +

∫ b

a

x
1

b − a
dx + 0 (2.18)

=
x2

2

1

b − a

∣
∣
∣
∣

b

a

(2.19)

=
b2 − a2

2

1

b − a
(2.20)

=
b + a

2
(2.21)

which corresponds nicely to the intuition that the expectation should be in the middle of the
allowed interval.

2.8.2 Variance

The variance is a measure of how broadly distributed the r.v. tends to be. It’s defined as the
expectation of the squared deviation from the mean:

Var(X) = E[(X − E(X))2] (2.22)

The variance is often denoted σ2 and its positive square root, σ, is known as the stan-
dard deviation.

Variance of Bernoulli and uniform distributions

The Bernoulli distribution’s variance needs to be calculated explicitly; recall that its expec-
tation is π:

E[((X) − E(X))2] =
∑

x∈{0,1}
(x − π)2 P (x) (2.23)

= π2(1 − π) + (1 − π)2 × π (2.24)

= π(1 − π)[π + (1 − π] (2.25)

= π(1 − π) (2.26)

Note that the variance is largest at π = 0.5 and zero when π = 0 or π = 1.

The uniform distribution also needs its variance explicitly calculated; its variance is (b−a)2

12

(see Homework XXX).
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2.9 Joint probability distributions

Recall that a basic probability distribution is defined over a random variable, and a random
variable maps from the sample space to the real numbers (R). What about when you are
interested in the outcome of an event that is not naturally characterizable as a single real-
valued number, such as the two formants of a vowel?

The answer is really quite simple: probability distributions can be generalized over mul-
tiple random variables at once, in which case they are called joint probability distri-
butions (jpd’s). If a jpd is over N random variables at once then it maps from the sample
space to RN , which is short-hand for real-valued vectors of dimension N . Notationally,
for random variables X1, X2, · · · , XN , the joint probability density function is written as

p(X1 = x1, X2 = x2, · · · , XN = xn)

or simply

p(x1, x2, · · · , xn)

for short.
Whereas for a single r.v., the cumulative distribution function is used to indicate the

probability of the outcome falling on a segment of the real number line, the joint cu-
mulative probability distribution function indicates the probability of the outcome
falling in a region of N -dimensional space. The joint cpd, which is sometimes notated as
F (x1, · · · , xn) is defined as the probability of the set of random variables all falling at or
below the specified values of Xi:

3

F (x1, · · · , xn)
def
= P (X1 ≤ x1, · · · , XN ≤ xn)

The natural thing to do is to use the joint cpd to describe the probabilities of rect-
angular volumes. For example, suppose X is the f1 formant and Y is the f2 formant
of a given utterance of a vowel. The probability that the vowel will lie in the region
480Hz ≤ f1530Hz, 940Hz ≤ f2 ≤ 1020Hz is given below:

P (480Hz ≤ f1530Hz, 940Hz ≤ f2 ≤ 1020Hz) =

F (530Hz, 1020Hz) − F (530Hz, 940Hz) − F (480Hz, 1020Hz) + F (480Hz, 940Hz)

3Technically, the definition of the multivariate cpd is then

F (x1, · · · , xn)
def
= P (X1 ≤ x1, · · · ,XN ≤ xn) =

∑

~x≤〈x1,··· ,xN 〉
p(~x) [Discrete] (2.27)

F (x1, · · · , xn)
def
= P (X1 ≤ x1, · · · ,XN ≤ xn) =

∫ x1

−∞
· · ·

∫ xN

−∞
p(~x)dxN · · · dx1 [Continuous]

(2.28)
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Figure 2.4: The probability of the formants of a vowel landing in the grey rectangle can be
calculated using the joint cumulative distribution function.

and visualized in Figure 2.4 using the code below.

> plot(c(),c(),xlim=c(200,800),ylim=c(500,2500),xlab="f1",ylab="f2")

> rect(480,940,530,1020,col=8)

2.10 Marginalization

Often we have direct access to a joint density function but we are more interested in the
probability of an outcome of a subset of the random variables in the joint density. Obtaining
this probability is called marginalization, and it involves taking a weighted sum4 over the
possible outcomes of the r.v.’s that are not of interest. For two variables X, Y :

P (X = x) =
∑

y

P (x, y)

=
∑

y

P (X = x|Y = y)P (y)

In this case P (X) is often called a marginal probability and the process of calculating it from
the joint density P (X, Y ) is known as marginalization.

2.11 Covariance

The covariance between two random variables X and Y is defined as follows:

4or integral in the continuous case
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Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

Simple example:

(2)

Coding for Y
0 1

Coding for X Pronoun Not Pronoun
0 Object Preverbal 0.224 0.655 .879
1 Object Postverbal 0.014 0.107 .121

.238 .762

Each of X and Y can be treated as a Bernoulli random variable with arbitrary codings of 1
for Postverbal and Not Pronoun, and 0 for the others. As a resunt, we have µX = 0.121,
µY = 0.762. The covariance between the two is:

(0 − .121) × (0 − .762) × .224 (0,0)

+(1 − .121) × (0 − .762) × 0.014 (1,0)

+(0 − .121) × (1 − .762) × 0.0655 (0,1)

+(1 − .121) × (1 − .762) × 0.107 (1,1)

=0.0148

If X and Y are conditionally independent given our state of knowledge, then the covari-
ance between the two is zero

In R, we can use the cov() function to get the covariance between two random variables,
such as word length versus frequency across the English lexicon:

> cov(x$Length,x$Count)

[1] -42.44823

> cov(x$Length,log(x$Count))

[1] -0.9333345

The covariance in both cases is negative, indicating that longer words tend to be less frequent.
If we shuffle one of the covariates around, it eliminates this covariance: order()

plus
runif()

give
a nice
way of
random-
izing a
vector.

> cov(x$Length,log(x$Count)[order(runif(length(x$Count)))])

[1] 0.006211629

The covariance is essentially zero now.
Two important asides: the variance of a random variable X is just its covariance with

itself:

Var(X) = Cov(X, X) (2.29)

and any two random variables X and Y that are conditionally independent given our state
of knowledge have covariance Cov(X, Y ) = 0.
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2.11.1 Covariance and scaling random variables

What happens to Cov(X, Y ) when you scale X? Let Z = a + bX. It turns out that the
covariance with Y increases by b:5

Cov(Z, Y ) = bCov(X, Y )

As an important consequence of this, rescaling a random variable by Z = a + bX rescales
the variance by b2: Var(Z) = b2Var(X).

2.11.2 Correlation

We just saw that the covariance of word length with frequency was much higher than with
log frequency. However, the covariance cannot be compared directly across different pairs of
random variables, because we also saw that random variables on different scales (e.g., those
with larger versus smaller ranges) have different covariances due to the scale. For this reason,
it is commmon to use the correlation ρ as a standardized form of covariance:

ρXY =
Cov(X, Y )

√

V ar(X)V ar(Y )

If X and Y are independent, then their covariance (and hence correlation) is zero.

2.12 Properties of Expectation and Variance

Linearity of the expectation

Linearity of the expectation is an extremely important property and can expressed in two
parts. First, if you rescale a random variable, its expectation rescales in the exact same way.
Mathematically, if Y = a + bX, then E(Y ) = a + bE(X).

Second, the expectation of the sum of random variables is the sum of the expectations.
That is, if Y =

∑

i Xi, then E(Y ) =
∑

i E(Xi). This holds regardless of any conditional
dependencies that hold among the Xi.

5The reason for this is as follows. By linearity of expectation, E(Z) = a + bE(X). This gives us

Cov(Z, Y ) = E[(Z − a + bE(X))(Y − E(Y ))]

= E[(bX − bE(X))(Y − E(Y ))]

= E[b(X − E(X))(Y − E(Y ))]

= bE[(X − E(X))(Y − E(Y ))] [by linearity of expectation]

= bCov(X, Y ) [by linearity of expectation]
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We can put together these two pieces to express the expectation of a linear combination
of random variables. If Y = a +

∑

i biXi, then

E(Y ) = a +
∑

i

biE(Xi) (2.30)

This is incredibly convenient. We’ll demonstrate this convenience by introducing the bino-
mial distribution in the next section.

Variance of the sum of random variables

What is the the variance of the sum of random variables X1 + · · ·+ Xn. We have

Var(X1 + · · · + Xn) = E
[
(X1 + · · · + Xn − E (X1 + · · ·+ Xn))2] (2.31)

= E
[
(X1 + · · · + Xn − (µ1 + · · ·+ µn))2] (Linearity of the expectation)

(2.32)

= E
[
((X1 − µ1) + · · ·+ (Xn − µn))2] (2.33)

= E

[
n∑

i=1

(Xi − µi)
2 +

∑

i6=j

(Xi − µi)(Xj − µj)

]

(2.34)

=
n∑

i=1

E
[
(Xi − µi)

2
]
+

∑

i6=j

E [(Xi − µi)(Xj − µj)] (Linearity of the expectation)

(2.35)

=

n∑

i=1

Var(Xi) +
∑

i6=j

Cov(Xi, Xj)(Definition of variance & covariance)

(2.36)

Since the covariance between conditionally independent random variables is zero, it follows
that the variance of the sum of pairwise independent random variables is the sum of their
variances.

2.13 The binomial distribution

We’re now in a position to introduce one of the most important probability distributions for
linguistics, the binomial distribution. The binomial distribution family is characterized
by two parameters, n and π, and a binomially distributed random variable Y is defined as
the sum of n identical, independently distributed (i.i.d.) Bernoulli random variables, each
with parameter π.

For example, it is intuitively obvious that the mean of a binomially distributed r.v. Y
with parameters n and π is πn. However, it takes some work to show this explicitly by
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summing over the possible outcomes of Y and their probabilities. On the other hand, Y
can be re-expressed as the sum of n Bernoulli random variables Xi. The resulting
probability density function is, for k = 0, 1, . . . , n:

P (Y = k) =

(
n

k

)

πk(1 − π)n−k (2.37)

We’ll also illustrate the utility of the linearity of expectation by deriving the expectation of
Y . The mean of each Xi is trivially π, so we have:

E(Y ) =
n∑

i

E(Xi) (2.38)

=

n∑

i

π = πn (2.39)

which makes intuitive sense.
Finally, since a binomial random variable is the sum of n mutually independent Bernoulli

random variables and the variance of a Bernoulli random variable is π(1 − π), the variance
of a binomial random variable is nπ(1 − π).

2.13.1 The multinomial distribution

The multinomial distribution is the generalization of the binomial distribution to r ≥ 2
possible outcomes. The r-class multinomial is a sequence of r random variables X1, . . . , Xr

whose joint distribution is characterized by r parameters: a size parameter n denoting the
number of trials, and r − 1 parameters π1, . . . , πr−1, where πi denotes the probability that
the outcome of a single trial will fall into the i-th class. (The probability that a single trial

will fall into the r-th class is πr
def
= 1−∑r−1

i=1 πi, but this is not a real parameter of the family
because it’s completely determined by the other parameters.) The (joint) probability mass
function of the multinomial looks like this:

P (X1 = n1, · · · , Xr = nr) =

(
n

n1 · · ·nr

) r∏

i=1

πi (2.40)

where ni is the number of trials that fell into the r-th class, and
(

n
n1···nr

)
= n!

n1!...nr !
.
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