Today’s content

- Quick review of probability: axioms, joint & conditional probabilities, Bayes’ Rule, conditional independence
- Bayes Nets (a.k.a. directed acyclic graphical models, DAGs)
- The Gaussian distribution
 - Example: human phoneme categorization
- Maximum likelihood estimation
- Bayesian parameter estimation
- Frequentist hypothesis testing
- Bayesian hypothesis testing
Probability spaces

Traditionally, probability spaces are defined in terms of sets. An event E is a subset of a sample space Ω: $E \subseteq \Omega$.
Probability spaces

Traditionally, probability spaces are defined in terms of sets. An event E is a subset of a sample space Ω: $E \subseteq \Omega$.

A probability space P on a sample space Ω is a function from events E in Ω to real numbers such that the following three axioms hold:

1. $P(E) \geq 0$ for all $E \subset \Omega$ (non-negativity).
2. If E_1 and E_2 are disjoint, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ (disjoint union).
3. $P(\Omega) = 1$ (properness).
Joint, conditional, and marginal probabilities

Given the joint distribution $P(X, Y)$ over two random variables X and Y, the conditional distribution $P(Y|X)$ is defined as

$$P(Y|X) \equiv \frac{P(X, Y)}{P(X)}$$
Joint, conditional, and marginal probabilities

Given the joint distribution $P(X, Y)$ over two random variables X and Y, the conditional distribution $P(Y|X)$ is defined as

$$P(Y|X) \equiv \frac{P(X, Y)}{P(X)}$$

The marginal probability distribution $P(X)$ is

$$P(X = x) = \sum_y P(X = x, Y = y)$$

These concepts can be extended to arbitrary numbers of random variables.
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]

And this generalizes to more than two variables:
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]

And this generalizes to more than two variables:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]

And this generalizes to more than two variables:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]
\[P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1) \]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2 | E_1)P(E_1) \]

And this generalizes to more than two variables:

\[P(E_1, E_2) = P(E_2 | E_1)P(E_1) \]
\[P(E_1, E_2, E_3) = P(E_3 | E_1, E_2)P(E_2 | E_1)P(E_1) \]
\[\vdots \]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]

And this generalizes to more than two variables:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]
\[P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1) \]
\[\vdots \]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[
P(E_1, E_2) = P(E_2|E_1)P(E_1)
\]

And this generalizes to more than two variables:

\[
P(E_1, E_2) = P(E_2|E_1)P(E_1)
\]
\[
P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1)
\]
\[\vdots\]
\[
P(E_1, E_2, \ldots, E_n) = P(E_n|E_1, E_2, \ldots, E_{n-1}) \ldots P(E_2|E_1)P(E_1)
\]
The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]

And this generalizes to more than two variables:

\[P(E_1, E_2) = P(E_2|E_1)P(E_1) \]
\[P(E_1, E_2, E_3) = P(E_3|E_1, E_2)P(E_2|E_1)P(E_1) \]
\[\vdots \]
\[P(E_1, E_2, \ldots, E_n) = P(E_n|E_1, E_2, \ldots, E_{n-1}) \ldots P(E_2|E_1)P(E_1) \]

Breaking a joint probability down into the product a marginal probability and several joint probabilities this way is called **chain rule decomposition**.
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]

This “theorem” follows directly from def’n of conditional probability:

\[P(A, B) = P(B|A)P(A) \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]

This “theorem” follows directly from def’n of conditional probability:

\[P(A, B) = P(B|A)P(A) \]
\[P(A, B) = P(A|B)P(B) \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]

This “theorem” follows directly from def’n of conditional probability:

\[P(A, B) = P(B|A)P(A) \]
\[P(A, B) = P(A|B)P(B) \]

So

\[P(A|B)P(B) = P(B|A)P(A) \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]

This “theorem” follows directly from def’n of conditional probability:

\[P(A, B) = P(B|A)P(A) \]
\[P(A, B) = P(A|B)P(B) \]

So

\[\frac{P(A|B)P(B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} \]
Bayes’ Rule (Bayes’ Theorem)

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

With extra "background" random variables \(I \):

\[P(A|B, I) = \frac{P(B|A, I)P(A|I)}{P(B|I)} \]

This “theorem” follows directly from def’n of conditional probability:

\[P(A, B) = P(B|A)P(A) \]
\[P(A, B) = P(A|B)P(B) \]

So

\[\frac{P(A|B)P(B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} \]
Other ways of writing Bayes’ Rule

$$P(A|B) = \frac{\text{Likelihood} \cdot \text{Prior}}{\text{Normalizing constant}}$$

- The hardest part of using Bayes’ Rule was calculating the normalizing constant (a.k.a. the \textit{partition function})
Other ways of writing Bayes’ Rule

\[P(A|B) = \frac{\text{Likelihood Prior}}{\text{Normalizing constant}} \]

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

- The hardest part of using Bayes’ Rule was calculating the normalizing constant (a.k.a. the partition function)
- Hence there are often two other ways we write Bayes’ Rule:
Other ways of writing Bayes’ Rule

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

- The hardest part of using Bayes’ Rule was calculating the normalizing constant (a.k.a. the partition function)
- Hence there are often two other ways we write Bayes’ Rule:
 1. Emphasizing explicit marginalization:

\[P(A|B) = \frac{P(B|A)P(A)}{\sum_a P(A = a, B)} \]
Other ways of writing Bayes’ Rule

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

- The hardest part of using Bayes’ Rule was calculating the normalizing constant (a.k.a. the \textit{partition function})
- Hence there are often two other ways we write Bayes’ Rule:
 1. Emphasizing explicit marginalization:
 \[P(A|B) = \frac{\sum_a P(A = a, B)}{\sum_a P(A = a, B)} \]
 2. Ignoring the partition function:
 \[P(A|B) \propto P(B|A)P(A) \]
(Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

$$P(A, B|C) = P(A|C)P(B|C)$$

Conditional independence of A and B given C is often expressed as

$$A \perp B|C$$
Directed graphical models

- A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables.
Directed graphical models

- A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables
- So next we’ll introduce you to a general framework for specifying conditional independencies among collections of random variables
Directed graphical models

- A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables.
- So next we’ll introduce you to a general framework for specifying conditional independencies among collections of random variables.
- It won’t allow us to express *all possible* independencies that may hold, but it goes a long way.
Directed graphical models

- A lot of the interesting joint probability distributions in the study of language involve *conditional independencies* among the variables.
- So next we’ll introduce you to a general framework for specifying conditional independencies among collections of random variables.
- It won’t allow us to express *all possible* independencies that may hold, but it goes a long way.
- And I hope that you’ll agree that the framework is intuitive too!
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
A non-linguistic example

Imagine a factory that produces three types of coins in equal volumes:
- Fair coins;
- 2-headed coins;
- 2-tailed coins.
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:
 - The factory produces a coin of type X and sends it to you;
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.
- Generative process:
 - The factory produces a coin of type X and sends it to you;
 - You receive the coin and flip it twice, with H(eads)/T(ails) outcomes Y_1 and Y_2
A non-linguistic example

- Imagine a factory that produces three types of coins in equal volumes:
 - Fair coins;
 - 2-headed coins;
 - 2-tailed coins.

- Generative process:
 - The factory produces a coin of type X and sends it to you;
 - You receive the coin and flip it twice, with H(eads)/T(ails) outcomes Y_1 and Y_2.

- Receiving a coin from the factory and flipping it twice is sampling (or taking a sample) from the joint distribution $P(X, Y_1, Y_2)$.
This generative process a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents
This generative process a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable \textbf{given only its parents}

In this DAG, \(P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X) \)
This generative process a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable \textbf{given only its parents}.

In this DAG, \(P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X) \)

\begin{tabular}{l|l}
X & \(P(X)\) \\
Fair & \(\frac{1}{3}\) \\
2-H & \(\frac{1}{3}\) \\
2-T & \(\frac{1}{3}\) \\
\end{tabular}
This generative process a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable **given only its parents**

In this DAG, $P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X)$

| | $P(X)$ | | $P(Y_1 = H|X)$ | $P(Y_1 = T|X)$ |
|---|--------|---|----------------|----------------|
| Fair | $\frac{1}{3}$ | Fair | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 2-H | $\frac{1}{3}$ | 2-H | 1 | 0 |
| 2-T | $\frac{1}{3}$ | 2-T | 0 | 1 |
This generative process a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable \textbf{given only its parents}

In this DAG, \(P(X, Y_1, Y_2) = P(X)P(Y_1|X)P(Y_2|X) \)
Conditional independence in Bayes nets

| X | P(X) | X | P(Y_1 = H | X) | P(Y_1 = T | X) | X | P(Y_2 = H | X) | P(Y_2 = T | X) |
|------|------|------|--------|--------|--------|------|--------|--------|
| Fair | 1/3 | Fair | 1/2 | 1/2 | Fair | 1/2 | 1/2 |
| 2-H | 1/3 | 2-H | 1 | 0 | 2-H | 1 | 0 |
| 2-T | 1/3 | 2-T | 0 | 1 | 2-T | 0 | 1 |

Question:

- **Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?**
Conditional independence in Bayes nets

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>(P(X))</th>
<th>(X)</th>
<th>(P(Y_1 = H \mid X))</th>
<th>(P(Y_1 = T \mid X))</th>
<th>(X)</th>
<th>(P(Y_2 = H \mid X))</th>
<th>(P(Y_2 = T \mid X))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fair</td>
<td>(\frac{1}{3})</td>
<td>Fair</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>Fair</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td>2-H</td>
<td>(\frac{1}{3})</td>
<td>2-H</td>
<td>1</td>
<td>0</td>
<td>2-H</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2-T</td>
<td>(\frac{1}{3})</td>
<td>2-T</td>
<td>0</td>
<td>1</td>
<td>2-T</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Question:

- *Conditioned on not having any further information, are the two coin flips \(Y_1\) and \(Y_2\) in this generative process independent?*

- That is, if \(C = \emptyset\), is it the case that \(A \perp B \mid C\)?
Conditional independence in Bayes nets

| X | P(X) | X | P(Y_1 = H|X) | P(Y_1 = T|X) | X | P(Y_2 = H|X) | P(Y_2 = T|X) |
|----|------|----|-------------|-------------|----|-------------|-------------|
| Fair | \(\frac{1}{3}\) | Fair | \(\frac{1}{2}\) | \(\frac{1}{2}\) | Fair | \(\frac{1}{2}\) | \(\frac{1}{2}\) |
| 2-H | \(\frac{1}{3}\) | 2-H | 1 | 0 | 2-H | 1 | 0 |
| 2-T | \(\frac{1}{3}\) | 2-T | 0 | 1 | 2-T | 0 | 1 |

Question:

- *Conditioned on not having any further information, are the two coin flips \(Y_1\) and \(Y_2\) in this generative process independent?*
- That is, if \(C = \{\}\), is it the case that \(A \perp B|C\)?
- *No!*
Conditional independence in Bayes nets

| X | P(X) | X | P(Y_1 = H|X) | P(Y_1 = T|X) | X | P(Y_2 = H|X) | P(Y_2 = T|X) |
|-----|------|-----|-------------|-------------|-----|-------------|-------------|
| Fair| \(\frac{1}{3}\) | Fair| \(\frac{1}{2}\) | \(\frac{1}{2}\) | Fair| \(\frac{1}{2}\) | \(\frac{1}{2}\) |
| 2-H | \(\frac{1}{3}\) | 2-H | 1 | 0 | 2-H | 1 | 0 |
| 2-T | \(\frac{1}{3}\) | 2-T | 0 | 1 | 2-T | 0 | 1 |

Question:

- **Conditioned on not having any further information, are the two coin flips \(Y_1\) and \(Y_2\) in this generative process independent?**
- That is, if \(C = \{\}\), is it the case that \(A \perp B|C\)?
- **No!**
 - \(P(Y_2 = H) = \frac{1}{2}\) (you can see this by symmetry)
Conditional independence in Bayes nets

| | $P(X)$ | X | $P(Y_1 = H|X)$ | $P(Y_1 = T|X)$ | X | $P(Y_2 = H|X)$ | $P(Y_2 = T|X)$ |
|-------|--------|-----|---------------|---------------|-----|---------------|---------------|
| Fair | $\frac{1}{3}$ | Fair | $\frac{1}{2}$ | $\frac{1}{2}$ | Fair | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 2-H | $\frac{1}{3}$ | 2-H | 1 | 0 | 2-H | 1 | 0 |
| 2-T | $\frac{1}{3}$ | 2-T | 0 | 1 | 2-T | 0 | 1 |

Question:

▶ **Conditioned on not having any further information, are the two coin flips Y_1 and Y_2 in this generative process independent?**

▶ That is, if $C = \emptyset$, is it the case that $A \perp B|C$?

▶ **No!**

▶ $P(Y_2 = H) = \frac{1}{2}$ (you can see this by symmetry)

▶ But $P(Y_2 = H|Y_1 = H) = \frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times 1 = \frac{5}{6}$
Formally assessing conditional independence in Bayes Nets

- The comprehensive criterion for assessing conditional independence is known as D-separation.
Formally assessing conditional independence in Bayes Nets

- The comprehensive criterion for assessing conditional independence is known as D-separation.
- A path between two disjoint node sets A and B is a sequence of edges connecting some node in A with some node in B.
The comprehensive criterion for assessing conditional independence is known as D-separation.

A path between two disjoint node sets A and B is a sequence of edges connecting some node in A with some node in B.

Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
Formally assessing conditional independence in Bayes Nets

- The comprehensive criterion for assessing conditional independence is known as D-separation.
- A path between two disjoint node sets A and B is a sequence of edges connecting some node in A with some node in B.
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
- A node on the path has non-converging arrows if two edges on the path connect to it, but at least one does not point to it.
Formally assessing conditional independence in Bayes Nets

- The comprehensive criterion for assessing conditional independence is known as D-separation.
- A path between two disjoint node sets A and B is a sequence of edges connecting some node in A with some node in B.
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
- A node on the path has non-converging arrows if two edges on the path connect to it, but at least one does not point to it.
- A third disjoint node set C d-separates A and B if for every path between A and B, either:
 1. there is some node on the path with converging arrows which is not in C; or
 2. there is some node on the path whose arrows do not converge and which is in C.
Major types of d-separation

A node set C d-separates A and B if for every path between A and B, either:

1. there is some node on the path with converging arrows which is not in C; or
2. there is some node on the path whose arrows do not converge and which is in C.

Common-cause d-separation (from knowing Z)

Intervening d-separation (from knowing Y)

Explaining away: knowing Z prevents d-separation

D-separation in the absence of knowledge of Z
Back to our example
Back to our example

Without looking at the coin before flipping it, the outcome Y_1 of the first flip gives me information about the type of coin, and affects my beliefs about the outcome of Y_2.

X

Y_1

Y_2
Back to our example

- *Without looking at the coin before flipping it*, the outcome Y_1 of the first flip gives me information about the type of coin, and affects my beliefs about the outcome of Y_2.

- But if I *look* at the coin before flipping it, Y_1 and Y_2 are rendered independent.
An example of explaining away

I saw an exhibition about the, uh...
An example of explaining away

I saw an exhibition about the, uh...

There are several causes of disfluency, including:
An example of explaining away

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- An upcoming word is difficult to produce (e.g., low frequency, *astrolabe*)
An example of explaining away

I saw an exhibition about the, uh…

There are several causes of disfluency, including:

- An upcoming word is difficult to produce (e.g., low frequency, *astrolabe*)
- The speaker’s attention was distracted by something in the non-linguistic environment
An example of explaining away

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- An upcoming word is difficult to produce (e.g., low frequency, *astrolabe*)
- The speaker’s attention was distracted by something in the non-linguistic environment
An example of explaining away

I saw an exhibition about the, uh...

There are several causes of disfluency, including:

- An upcoming word is difficult to produce (e.g., low frequency, *astrolabe*)
- The speaker’s attention was distracted by something in the non-linguistic environment

A reasonable graphical model:
An example of explaining away

- Without knowledge of D, there’s no reason to expect that W and A are correlated
An example of explaining away

- Without knowledge of D, there's no reason to expect that W and A are correlated
- But hearing a disfluency demands a cause
An example of explaining away

- Without knowledge of D, there's no reason to expect that W and A are correlated.
- But hearing a disfluency demands a cause.
- Knowing that there was a distraction explains away the disfluency, reducing the probability that the speaker was planning to utter a hard word.
An example of the disfluency model

- Let’s suppose that both hard words and distractions are unusual, the latter more so

\[
P(W = \text{hard}) = 0.25 \quad P(A = \text{distracted}) = 0.15
\]
An example of the disfluency model

Let’s suppose that both hard words and distractions are unusual, the latter more so

\[
P(W = \text{hard}) = 0.25 \\
P(A = \text{distracted}) = 0.15
\]

Hard words and distractions both induce disfluencies; having both makes a disfluency really likely

<table>
<thead>
<tr>
<th>W</th>
<th>A</th>
<th>$D=$no disfluency</th>
<th>$D=$disfluency</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy</td>
<td>undistracted</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>easy</td>
<td>distracted</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>hard</td>
<td>undistracted</td>
<td>0.85</td>
<td>0.15</td>
</tr>
<tr>
<td>hard</td>
<td>distracted</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
An example of the disfluency model

\[P(W = \text{hard}) = 0.25 \]
\[P(A = \text{distracted}) = 0.15 \]

Suppose that we observe the speaker uttering a disfluency. What is \(P(W = \text{hard}|D = \text{disfluent}) \)?
An example of the disfluency model

\[P(W = \text{hard}) = 0.25 \]
\[P(A = \text{distracted}) = 0.15 \]

<table>
<thead>
<tr>
<th>(W)</th>
<th>(A)</th>
<th>(D = \text{no disfluency})</th>
<th>(D = \text{disfluency})</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy</td>
<td>undistracted</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>easy</td>
<td>distracted</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>hard</td>
<td>undistracted</td>
<td>0.85</td>
<td>0.15</td>
</tr>
<tr>
<td>hard</td>
<td>distracted</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Suppose that we observe the speaker uttering a disfluency. What is \(P(W = \text{hard} | D = \text{disfluent}) \)?
- Now suppose we also learn that her attention is distracted. What does that do to our beliefs about \(W \)
An example of the disfluency model

\[P(W = \text{hard}) = 0.25 \]
\[P(A = \text{distracted}) = 0.15 \]

<table>
<thead>
<tr>
<th>W</th>
<th>A</th>
<th>$D=\text{no disfluency}$</th>
<th>$D=\text{disfluency}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy</td>
<td>undistracted</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>easy</td>
<td>distracted</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>hard</td>
<td>undistracted</td>
<td>0.85</td>
<td>0.15</td>
</tr>
<tr>
<td>hard</td>
<td>distracted</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Suppose that we observe the speaker uttering a disfluency. What is $P(W = \text{hard} | D = \text{disfluent})$?
- Now suppose we also learn that her attention is distracted. What does that do to our beliefs about W?
- That is, what is $P(W = \text{hard} | D = \text{disfluent}, A = \text{distracted})$?
An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

\[P(W = \text{hard}) = 0.25 \]
An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

\[
P(W = \text{hard}) = 0.25
\]
\[
P(W = \text{hard}|D = \text{disfluent}) = 0.57
\]
An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

\[
\begin{align*}
P(W = \text{hard}) &= 0.25 \\
P(W = \text{hard}|D = \text{disfluent}) &= 0.57 \\
P(W = \text{hard}|D = \text{disfluent}, A = \text{distracted}) &= 0.40
\end{align*}
\]
An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

\[
P(W = \text{hard}) = 0.25
\]
\[
P(W = \text{hard}|D = \text{disfluent}) = 0.57
\]
\[
P(W = \text{hard}|D = \text{disfluent}, A = \text{distracted}) = 0.40
\]

- Knowing that the speaker was distracted (A) decreased the probability that the speaker was about to utter a hard word (W)—A explained D away.
An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

\[
P(W = \text{hard}) = 0.25 \\
P(W = \text{hard}|D = \text{disfluent}) = 0.57 \\
P(W = \text{hard}|D = \text{disfluent}, A = \text{distracted}) = 0.40
\]

- Knowing that the speaker was distracted (A) decreased the probability that the speaker was about to utter a hard word (W)—A explained D away.
- A caveat: the type of relationship among A, W, and D will depend on the values one finds in the probability table!
Summary thus far

Key points:
- Bayes’ Rule is a compelling framework for modeling inference under uncertainty
- DAGs/Bayes Nets are a broad class of models for specifying joint probability distributions with conditional independencies
- Classic Bayes Net references: ??; ?; ?, Chapter 14; ?, Chapter 8.
An example of the disfluency model

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hard</td>
<td>W=hard</td>
<td></td>
</tr>
<tr>
<td>easy</td>
<td>W=easy</td>
<td></td>
</tr>
<tr>
<td>disfl</td>
<td>D=disfluent</td>
<td></td>
</tr>
<tr>
<td>distr</td>
<td>A=distracted</td>
<td></td>
</tr>
<tr>
<td>undistr</td>
<td>A=undistracted</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(W = \text{hard} | D = \text{disfluent}, A = \text{distracted})
\]

\[
P(\text{hard} | \text{disfl}, \text{distr}) = \frac{P(\text{disfl} | \text{hard}, \text{distr})P(\text{hard} | \text{distr})}{P(\text{disfl} | \text{distr})} \quad \text{(Bayes' Rule)}
\]

\[
= \frac{P(\text{disfl} | \text{hard}, \text{distr})P(\text{hard})}{P(\text{disfl} | \text{distr})}
\]

\[
P(\text{disfl} | \text{distr}) = \sum_{W} P(\text{disfl} | W = w')P(W = w') \quad \text{(Marginalization)}
\]

\[
= P(\text{disfl} | \text{hard})P(\text{hard}) + P(\text{disfl} | \text{easy})P(\text{easy})
\]

\[
= 0.6 \times 0.25 + 0.3 \times 0.75
\]

\[
= 0.375
\]

\[
P(\text{hard} | \text{disfl}, \text{distr}) = \frac{0.6 \times 0.25}{0.375}
\]

\[
= 0.4
\]
An example of the disfluency model

\[P(W = \text{hard}|D = \text{disfluent}) \]

\[
P(\text{hard}|\text{disfl}) = \frac{P(\text{disfl}|\text{hard})P(\text{hard})}{P(\text{disfl})} \quad \text{(Bayes’ Rule)}
\]

\[
P(\text{disfl}|\text{hard}) = \sum_{a'} P(\text{disfl}|A = a', \text{hard})P(A = a'|\text{hard})
\]

\[
= P(\text{disfl}|A = \text{distr, hard})P(A = \text{distr}|\text{hard}) + P(\text{disfl}|\text{undistr, hard})P(\text{undistr}|\text{hard})
\]

\[
= 0.6 \times 0.15 + 0.15 \times 0.85
\]

\[
= 0.2175
\]

\[
P(\text{disfl}) = \sum_{w'} P(\text{disfl}|W = w')P(W = w')
\]

\[
= P(\text{disfl}|\text{hard})P(\text{hard}) + P(\text{disfl}|\text{easy})P(\text{easy})
\]

\[
P(\text{disfl}|\text{easy}) = \sum_{a'} P(\text{disfl}|A = a', \text{easy})P(A = a'|\text{easy})
\]

\[
= P(\text{disfl}|A = \text{distr, easy})P(A = \text{distr}|\text{easy}) + P(\text{disfl}|\text{undistr, easy})P(\text{undistr}|\text{easy})
\]

\[
= 0.3 \times 0.15 + 0.01 \times 0.85
\]

\[
= 0.0535
\]

\[
P(\text{disfl}) = 0.2175 \times 0.25 + 0.0535 \times 0.75
\]

\[
= 0.0945
\]

\[
P(\text{hard}|\text{disfl}) = \frac{0.2175 \times 0.25}{0.0945}
\]

\[
= 0.575396825396825
\]
Bayesian parameter estimation

The scenario: you are a native English speaker in whose experience passivizable constructions are passivized with frequency q.

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

You encounter a new dialect of English and hear data y consisting of n passivizable utterances, m of which were passivized:

\[X \sim Bern(\pi) \]

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- **Or** place a probability distribution on the number of passives in the next N passivizable utterances.
Anatomy of Bayesian inference

Simplest possible scenario:

\[I \rightarrow \theta \rightarrow Y \]
Anatomy of Bayesian inference

Simplest possible scenario:

The corresponding Bayesian inference:

\[P(\theta|y, I) = \frac{P(y|\theta, I)P(\theta|I)}{P(y|I)} \]
Anatomy of Bayesian inference

Simplest possible scenario:

\[I \xrightarrow{\theta} Y \]

The corresponding Bayesian inference:

\[
P(\theta|y, I) = \frac{P(y|\theta, I)P(\theta|I)}{P(y|I)}
\]

- Likelihood for \(\theta \)
- Prior over \(\theta \)

\[
= \frac{P(y|\theta)P(\theta|I)}{P(y|I)}
\]

Likelihood marginalized over \(\theta \)

(because \(y \perp I \mid \theta \))
Anatomy of Bayesian inference

Simplest possible scenario:

\[I \rightarrow \theta \rightarrow Y \]

The corresponding Bayesian inference:

\[
P(\theta|y, I) = \frac{P(y|\theta, I)P(\theta|I)}{P(y|I)}
\]

\[\text{Likelihood for } \theta \quad \text{Prior over } \theta \]

\[
= \frac{P(y|\theta)}{P(y|I)} \cdot \frac{P(\theta|I)}{P(y|I)}
\]

\[\text{Likelihood marginalized over } \theta \] (because \(y \perp I \mid \theta \))

- At the “bottom” of the graph, our model is the binomial distribution:

\[
P(y|\theta) \sim Binom(n, \theta)
\]

- But to get things going we have to set the prior \(P(\theta|I) \).
Priors for the binomial distribution

For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$

Because the prior is often supposed to account for "knowledge we bring to the table", we often write $P(\theta|I)$ to be explicit
Priors for the binomial distribution

- For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$
 - Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit
- Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution
Priors for the binomial distribution

- For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$
 - Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit
- Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution
- In general, the sky is the limit as to what you choose for $P(\theta)$
Priors for the binomial distribution

- For a model with parameters θ, a prior distribution is just some joint probability distribution $P(\theta)$
 - Because the prior is often supposed to account for “knowledge we bring to the table”, we often write $P(\theta|I)$ to be explicit
- Model parameters are nearly always real-valued, so $P(\theta)$ is generally a multivariate continuous distribution
- In general, the sky is the limit as to what you choose for $P(\theta)$
- But in many cases there are useful priors that will make your life easier
The beta distribution

The beta distribution has two parameters $\alpha_1, \alpha_2 > 0$ and is defined as:

$$P(\pi | \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1}(1 - \pi)^{\alpha_2-1}$$

$$(0 \leq \pi \leq 1, \alpha_1 > 0, \alpha_2 > 0)$$

where the beta function $B(\alpha_1, \alpha_2)$ serves as a normalizing constant:

$$B(\alpha_1, \alpha_2) = \int_0^1 \pi^{\alpha_1-1}(1 - \pi)^{\alpha_2-1} d\pi$$
Some beta distributions

If $X \sim B(\alpha_1, \alpha_2)$:

1. $E[X] = \frac{\alpha_1}{\alpha_1 + \alpha_2}$

2. If $\alpha_1, \alpha_2 > 1$, then X has a mode at $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence \(I = \langle \alpha_1, \alpha_2 \rangle \).

\[
P(\pi \mid y, \alpha_1, \alpha_2) = \frac{P(y \mid \pi) P(\pi \mid \alpha_1, \alpha_2)}{P(y \mid \alpha_1, \alpha_2)}
\] (1)
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence \(I = \langle \alpha_1, \alpha_2 \rangle \).

\[
P(\pi | y, \alpha_1, \alpha_2) = \frac{P(y | \pi)P(\pi | \alpha_1, \alpha_2)}{P(y | \alpha_1, \alpha_2)} \quad (1)
\]

Since the denominator is not a function of \(\pi \), it is a normalizing constant. Ignore it and work in terms of proportionality:

\[
P(\pi | y, \alpha_1, \alpha_2) \propto P(y | \pi)P(\pi | \alpha_1, \alpha_2)
\]
Let us use a beta distribution as a prior for our problem—hence $I = \langle \alpha_1, \alpha_2 \rangle$.

\[
P(\pi | y, \alpha_1, \alpha_2) = \frac{P(y | \pi)P(\pi | \alpha_1, \alpha_2)}{P(y | \alpha_1, \alpha_2)}
\] (1)

Since the denominator is not a function of π, it is a normalizing constant. Ignore it and work in terms of proportionality:

\[
P(\pi | y, \alpha_1, \alpha_2) \propto P(y | \pi)P(\pi | \alpha_1, \alpha_2)
\]

Likelihood for the binomial distribution is

\[
P(y | \pi) = \binom{n}{m} \pi^m (1 - \pi)^{n-m}
\]
Using the beta distribution as a prior

1. The ball hit the window. (Active)
2. The window was hit by the ball. (Passive)

Let us use a beta distribution as a prior for our problem—hence
\[l = \langle \alpha_1, \alpha_2 \rangle. \]

\[
P(\pi | y, \alpha_1, \alpha_2) = \frac{P(y | \pi) P(\pi | \alpha_1, \alpha_2)}{P(y | \alpha_1, \alpha_2)}
\]

(1)

Since the denominator is not a function of \(\pi \), it is a normalizing constant. Ignore it and work in terms of proportionality:

\[P(\pi | y, \alpha_1, \alpha_2) \propto P(y | \pi) P(\pi | \alpha_1, \alpha_2) \]

Likelihood for the binomial distribution is

\[
P(y | \pi) = \binom{n}{m} \pi^m (1 - \pi)^{n-m}
\]

Beta prior is

\[
P(\pi | \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi | y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n-m} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]
Using the beta distribution as a prior

Ignore $\binom{n}{m}$ and $B(\alpha_1, \alpha_2)$ (both constant in π):

$$P(\pi|y, \alpha_1, \alpha_2) \propto \underbrace{\pi^m(1-\pi)^{n-m}}_{\text{Likelihood}} \underbrace{\pi^{\alpha_1-1}(1-\pi)^{\alpha_2-1}}_{\text{Prior}}$$

$$\propto \pi^{m+\alpha_1-1}(1-\pi)^{n-m+\alpha_2-1}$$
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi|y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n-m} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]

\[
\propto \pi^{m+\alpha_1-1} (1 - \pi)^{n-m+\alpha_2-1}
\]

Crucial trick: this is itself a beta distribution! Recall that if \(\theta \sim Beta(\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi | y, \alpha_1, \alpha_2) \propto \underbrace{\pi^m (1 - \pi)^{n-m}}_{\text{Likelihood}} \underbrace{\pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}}_{\text{Prior}}
\]

\[
\propto \pi^{m+\alpha_1-1} (1 - \pi)^{n-m+\alpha_2-1}
\]

Crucial trick: this is itself a beta distribution! Recall that if \(\theta \sim \text{Beta} (\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}
\]

Hence \(P(\theta | y, \alpha_1, \alpha_2) \) is distributed as \(\text{Beta}(\alpha_1 + m, \alpha_2 + n - m) \).
Using the beta distribution as a prior

Ignore \(\binom{n}{m} \) and \(B(\alpha_1, \alpha_2) \) (both constant in \(\pi \)):

\[
P(\pi|y, \alpha_1, \alpha_2) \propto \pi^m (1 - \pi)^{n - m} \pi^{\alpha_1 - 1} (1 - \pi)^{\alpha_2 - 1}
\]

\[
\propto \pi^{m + \alpha_1 - 1} (1 - \pi)^{n - m + \alpha_2 - 1}
\]

Crucial trick: this is itself a beta distribution! Recall that if \(\theta \sim Beta(\alpha_1, \alpha_2) \) then

\[
P(\theta) = \frac{1}{B(\alpha_1, \alpha_2)} \pi^{\alpha_1 - 1} (1 - \pi)^{\alpha_2 - 1}
\]

Hence \(P(\theta|y, \alpha_1, \alpha_2) \) is distributed as \(Beta(\alpha_1 + m, \alpha_2 + n - m) \).

- With a beta prior and a binomial likelihood, the posterior is still beta-distributed. This is called conjugacy.
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivable utterances.

To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;

- Or place a probability distribution on the number of passives in the next N passivizable utterances.

- To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

- $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (Roland et al., 2007)
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- **Or** place a probability distribution on the number of passives in the next N passivizable utterances.

- To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability
- $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (Roland et al., 2007)
- The mode of a beta distribution is $\frac{\alpha_1-1}{\alpha_1+\alpha_2-2}$
Using our beta-binomial model

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

- $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (Roland et al., 2007)
- The mode of a beta distribution is $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$
- Hence we might use $\alpha_1 = 3$, $\alpha_2 = 24$ (note that $\frac{2}{25} = 0.08$)
Using our beta-binomial model

Goal:
- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

To estimate π it is common to use Maximum a-posteriori (MAP) estimation: choose the value of π with highest posterior probability

- $P(\text{passive}|\text{passivizable clause}) \approx 0.08$ (Roland et al., 2007)
- The mode of a beta distribution is $\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$
- Hence we might use $\alpha_1 = 3$, $\alpha_2 = 24$ (note that $\frac{2}{25} = 0.08$)
- Suppose that $n = 7$, $m = 2$: our posterior will be $Beta(5, 29)$, hence $\hat{\pi} = \frac{4}{32} = 0.125$
Beta-binomial posterior distributions
Fully Bayesian density estimation

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.
Fully Bayesian density estimation

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:
Fully Bayesian density estimation

Goal:

- Estimate the success parameter π associated with passivization in the new English dialect;
- Or place a probability distribution on the number of passives in the next N passivizable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:

$$P(y_{new} | y, I) = \int_{\theta} P(y_{new} | \theta) P(\theta | y, I) \, d\theta$$
Fully Bayesian density estimation

Goal:
- Estimate the success parameter π associated with passivization in the new English dialect;
- **Or** place a probability distribution on the number of passives in the next N passivizable utterances.

In the fully Bayesian view, we don’t summarize our posterior beliefs into a point estimate; rather, we marginalize over them in predicting the future:

$$P(y_{new}|y, I) = \int_\theta P(y_{new}|\theta)P(\theta|y, I)\,d\theta$$

This leads to the beta-binomial predictive model:

$$P(r|k, I, y) = \binom{k}{r} \frac{B(\alpha_1 + m + r, \alpha_2 + n - m + k - r)}{B(\alpha_1 + m, \alpha_2 + n - m)}$$
Fully Bayesian density estimation

\[P(k \text{ passives out of 50 trials} \mid y, I) \]

- Binomial
- Beta–Binomial
In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
Fully Bayesian density estimation

- In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
- This is because the new observations are only conditionally independent given θ—with uncertainty about θ, they are linked!
Fully Bayesian density estimation

- In this case (as in many others), marginalizing over the model parameters allows for greater dispersion in the model’s predictions.
- This is because the new observations are only conditionally independent given θ—with uncertainty about θ, they are linked!